资源描述
2022年人教版中学七7年级下册数学期末测试试卷(及答案)
一、选择题
1.的平方根是()
A. B. C.± D.±
2.下列四幅图案中,通过平移能得到图案E的是( )
A.A B.B C.C D.D
3.若点在第四象限,则点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列四个命题:①的平方根是;②是5的算术平方根;③经过一点有且只有一条直线与这条直线平行;④两条直线被第三条直线所截,同旁内角互补.其中真命题有( )
A.0个 B.1个 C.2个 D.3个
5.如图,如果AB∥EF,EF∥CD,下列各式正确的是( )
A.∠1+∠2−∠3=90° B.∠1−∠2+∠3=90° C.∠1+∠2+∠3=90° D.∠2+∠3−∠1=180°
6.下列计算正确的是( )
A. B. C. D.
7.如图,,平分,,则( )
A.112° B.126° C.136° D.146°
8.在平面直角坐标系中,对于点P(x,y),我们把点P'(1﹣y,x﹣1)叫做点P的友好点已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,…,这样依次得到点A1、A2、A3、A4…,若点A1的坐标为(3,2),则点A2020的坐标为( )
A.(3,2) B.(﹣1,2) C.(﹣1,﹣2) D.(3,﹣2)
九、填空题
9.9的算术平方根是 .
十、填空题
10.已知点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,那么a+b=_____.
十一、填空题
11.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为_____.
十二、填空题
12.如图,∠B=∠C,∠A=∠D,有下列结论:①ABCD;②AEDF;③AE⊥BC;④∠AMC=∠BND.其中正确的有_____.(只填序号)
十三、填空题
13.如图,将长方形ABCD沿DE折叠,使点C落在边AB上的点F处,若,则________°
十四、填空题
14.实数a、b在数轴上所对应的点如图所示,则|﹣b|+|a+|+的值_____.
十五、填空题
15.在平面直角坐标系中,点P的坐标为,则点P在第________象限.
十六、填空题
16.如图,一个点在第一象限及轴、轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第42秒时质点所在位置的坐标是______.
十七、解答题
17.计算题:
(1);
(2)
十八、解答题
18.求满足下列各式x的值
(1)2x2﹣8=0;
(2)(x﹣1)3=﹣4.
十九、解答题
19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF( , )
∵∠A=∠2 ∴( )
( , )
∴ AB∥CD∥EF( , )
∴ ∠A= ,∠C= ,
( , )
∵ ∠AFE =∠EFC+∠AFC ,∴ = .
二十、解答题
20.如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+2,y0+4),将△ABC作同样的平移得到△A1B1C1.
(1)请画出△A1B1C1并写出点A1,B1,C1的坐标;
(2)求△A1B1C1的面积;
二十一、解答题
21.已知:a是的小数部分,b是的小数部分.
(1)求a、b的值;
(2)求4a+4b+5的平方根.
二十二、解答题
22.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题.
(1)阴影正方形的面积是________?(可利用割补法求面积)
(2)阴影正方形的边长是________?
(3)阴影正方形的边长介于哪两个整数之间?请说明理由.
二十三、解答题
23.如图,,直线与、分别交于点、,点在直线上,过点作,垂足为点.
(1)如图1,求证:;
(2)若点在线段上(不与、、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系;
二十四、解答题
24.如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且
(1)求的度数.
(2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使时,求的度数.
二十五、解答题
25.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;
【问题迁移】
如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.
(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °.
(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC与α、β之间的数量关系,并说明理由.
(图1) (图2)
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据平方根的定义开平方求解即可;
【详解】
解:∵,
∴的平方根是;
故答案选C.
【点睛】
本题主要考查了平方根的计算,准确计算是解题的关键.
2.B
【分析】
根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.
【详解】
根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件
解析:B
【分析】
根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.
【详解】
根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;
A,D选项改变了方向,故错误,
C选项中,三角形和四边形位置不对,故C错误
故选:B
【点睛】
在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.
3.A
【分析】
首先得出第四象限点的坐标性质,进而得出Q点的位置.
【详解】
解:∵点P(a,b)在第四象限,
∴a>0,b<0,
∴-b>0,
∴点Q(-b,a)在第一象限.
故选:A.
【点睛】
此题主要考查了点的坐标,正确把握各象限点的坐标特点是解题关键.
4.B
【分析】
根据算术平方根的概念、平方根的概念、平行公理、平行线的性质判断即可.
【详解】
解:①,3的平方根是,故原命题错误,是假命题,不符合题意;
②是5的算术平方根,正确,是真命题,符合题意;
③经过直线外一点,有且只有一条直线与这条直线平行,故原命题错误,是假命题,不符合题意;
④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,是假命题,不符合题意.
真命题只有②,
故选:B.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
5.D
【分析】
根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.
【详解】
∵EF∥CD
∴∠3=∠COE
∴∠3−∠1=∠COE−∠1=∠BOE
∵AB∥EF
∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°
故选:D.
【点睛】
本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.
6.B
【分析】
直接利用算术平方根的定义、立方根的定义以及绝对值的性质、合并同类项法则分别化简得出答案.
【详解】
A、=3,故此选项错误;
B、,故此选项正确;
C、|a|﹣a=0(a≥0),故此选项错误;
D、4a﹣a=3a,故此选项错误;
故选:B.
【点睛】
此题主要考查了算术平方根的定义、立方根的定义以及绝对值的性质、合并同类项,正确掌握相关运算法则是解题关键.
7.D
【分析】
利用平行线的性质及角平分线的定义求解即可;
【详解】
解:∵,,
∴,
∵平分,
∴,
∵,
∴,
故选:D.
【点睛】
本题考查了平行线的性质,角平分线的定义;熟练掌握平行线的性质,并能进行推理计算是解决问题的关键.
8.D
【分析】
根据友好点的定义及点A1的坐标为(3,2),顺次写出几个友好点的坐标,可发现循环规律,据此可解.
【详解】
解:∵点A1的坐标为(3,2),
∴根据友好点的定义可得:A1(3,2),A
解析:D
【分析】
根据友好点的定义及点A1的坐标为(3,2),顺次写出几个友好点的坐标,可发现循环规律,据此可解.
【详解】
解:∵点A1的坐标为(3,2),
∴根据友好点的定义可得:A1(3,2),A2(-1,2),A3(-1,-2),A4(3,-2),A5(3,2),A6(-1,2),•••,
∴以此类推,每4个点为一个循环,
∵2020÷4=505,
∴点A2020的坐标与A4的坐标相同,为(3,-2).
故选D.
【点睛】
本题考查了规律型的点的坐标,从已知条件得出循环规律是解题的关键.
九、填空题
9.【分析】
根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】
∵,
∴9算术平方根为3.
故答案为3.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
解析:【分析】
根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】
∵,
∴9算术平方根为3.
故答案为3.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
十、填空题
10.-3.
【分析】
关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值.
【详解】
解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,
∴,
解得,
∴a+b=
解析:-3.
【分析】
关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值.
【详解】
解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,
∴,
解得,
∴a+b=﹣3,
故答案为:﹣3.
【点睛】
本题考查的是关于轴对称的两个点的坐标关系,掌握以上知识是解题的关键.
十一、填空题
11.4cm
【详解】
∵BC=10cm,BD:DC=3:2,
∴BD=6cm,CD=4cm,
∵AD是△ABC的角平分线,∠ACB=90°,
∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.
解析:4cm
【详解】
∵BC=10cm,BD:DC=3:2,
∴BD=6cm,CD=4cm,
∵AD是△ABC的角平分线,∠ACB=90°,
∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.
十二、填空题
12.①②④
【分析】
根据平行线的判定与性质分析判断各项正确与否即可.
【详解】
解:∵∠B=∠C,
∴AB∥CD,
∴∠A=∠AEC,
又∵∠A=∠D,
∴∠AEC=∠D,
∴AE∥DF,
∴∠AMC
解析:①②④
【分析】
根据平行线的判定与性质分析判断各项正确与否即可.
【详解】
解:∵∠B=∠C,
∴AB∥CD,
∴∠A=∠AEC,
又∵∠A=∠D,
∴∠AEC=∠D,
∴AE∥DF,
∴∠AMC=∠FNM,
又∵∠BND=∠FNM,
∴∠AMC=∠BND,
故①②④正确,
由条件不能得出∠AMC=90°,故③不一定正确;
故答案为:①②④.
【点睛】
本题考查了对顶角的性质及平行线的判定与性质,难度一般.
十三、填空题
13.5
【分析】
根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可.
【详解】
解:∵△DFE是由△DCE折叠得到的,
∴∠DEC=∠FE
解析:5
【分析】
根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可.
【详解】
解:∵△DFE是由△DCE折叠得到的,
∴∠DEC=∠FED,
又∵∠EFB=45°,∠B=90°,
∴∠BEF=45°,
∴∠DEC=(180°-45°)=67.5°.
故答案为:67.5.
【点睛】
本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.
十四、填空题
14.﹣2a﹣b
【分析】
直接利用数轴结合绝对值以及平方根的性质化简得出答案.
【详解】
解:由数轴可得:a<﹣,0<b<,
故|﹣b|+|a+|+
=﹣b﹣(a+)﹣a
=﹣b﹣a﹣﹣a
=﹣2a﹣b
解析:﹣2a﹣b
【分析】
直接利用数轴结合绝对值以及平方根的性质化简得出答案.
【详解】
解:由数轴可得:a<﹣,0<b<,
故|﹣b|+|a+|+
=﹣b﹣(a+)﹣a
=﹣b﹣a﹣﹣a
=﹣2a﹣b.
故答案为:﹣2a﹣b.
【点睛】
此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.
十五、填空题
15.三
【分析】
先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.
【详解】
解:∵a2为非负数,
∴-a2-1为负数,
∴点P的符号为(-,-)
∴点P在第三象限.
故答案
解析:三
【分析】
先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.
【详解】
解:∵a2为非负数,
∴-a2-1为负数,
∴点P的符号为(-,-)
∴点P在第三象限.
故答案为:三.
【点睛】
本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
十六、填空题
16.(6,6)
【分析】
根据质点移动的各点的坐标与时间的关系,找出规律即可解答.
【详解】
由题意可知质点移动的速度是1个单位长度╱秒,
到达(1,0)时用了3秒,到达(2,0)时用了4秒,
从(2,
解析:(6,6)
【分析】
根据质点移动的各点的坐标与时间的关系,找出规律即可解答.
【详解】
由题意可知质点移动的速度是1个单位长度╱秒,
到达(1,0)时用了3秒,到达(2,0)时用了4秒,
从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒,
从(0,3)到(3,0)有六个单位长度,则到(3,0)时用了9+6=15秒,
以此类推到(4,0)用了16秒,到(0,4)用了16+8=24秒,到(0,5)用了25秒,到(5,0)用了25+10=35秒,
故第42秒时质点到达的位置为(6,6),
故答案为:(6,6).
【点睛】
本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键.
十七、解答题
17.(1);(2)
【分析】
(1)先计算被开方数,再利用算术平方根的含义求解即可得到答案;
(2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案.
【详解】
解
解析:(1);(2)
【分析】
(1)先计算被开方数,再利用算术平方根的含义求解即可得到答案;
(2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案.
【详解】
解:(1),
(2)
【点睛】
本题考查的是算术平方根的含义,含乘方的有理数的混合运算,掌握以上知识是解题的关键.
十八、解答题
18.(1)或者;(2)
【分析】
(1)根据求一个数的平方根解方程
(2)根据求一个数的立方根解方程
【详解】
(1)2x2﹣8=0,
,
,
解得或者;
(2)(x﹣1)3=﹣4,
,
,
解得.
【
解析:(1)或者;(2)
【分析】
(1)根据求一个数的平方根解方程
(2)根据求一个数的立方根解方程
【详解】
(1)2x2﹣8=0,
,
,
解得或者;
(2)(x﹣1)3=﹣4,
,
,
解得.
【点睛】
本题考查了求一个数的平方根和立方根,掌握平方根和立方根的概念是解题的关键.
十九、解答题
19.同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【分析】
根据同旁
解析:同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【分析】
根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可.
【详解】
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF(同旁内角互补,两直线平行),
∵∠A=∠2 ,
∴( AB∥CD ) (同位角相等,两直线平行),
∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)
∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等)
∵ ∠AFE =∠EFC+∠AFC ,
∴ ∠A = ∠C+∠AFC .
故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【点睛】
本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.
二十、解答题
20.(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)
【分析】
(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标.
(2)利用分割法求解即可.
【详解】
解:(1
解析:(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)
【分析】
(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标.
(2)利用分割法求解即可.
【详解】
解:(1)如图,A1B1C1并写即为所求作,A1(1,2),B1(0,0),C1(-2,3).
(2)△A1B1C1的面积=3×3-×3×2-×1×2-×1×3=.
【点睛】
本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
二十一、解答题
21.(1)a=﹣3,b=4﹣;(2)±3.
【分析】
(1)根据3<<4,即可求出a、b的值;
(2)把a,b代入代数式计算求值,再求平方根即可.
【详解】
解:(1)∵3<<4,
∴11<8+<12,
解析:(1)a=﹣3,b=4﹣;(2)±3.
【分析】
(1)根据3<<4,即可求出a、b的值;
(2)把a,b代入代数式计算求值,再求平方根即可.
【详解】
解:(1)∵3<<4,
∴11<8+<12,4<8﹣<5,
∵a是的小数部分,b是的小数部分,
∴a=8+﹣11=﹣3,b=8﹣﹣4=4﹣.
(2),
∴4a+4b+5的平方根为:=±3.
【点睛】
本题考查了无理数的估算,求一个数的平方根等知识,能熟练估算的近似值,进而求出a、b的值是解题关键.
二十二、解答题
22.(1)5;(2);(3)2与3两个整数之间,见解析
【分析】
(1)通过割补法即可求出阴影正方形的面积;
(2)根据实数的性质即可求解;
(3)根据实数的估算即可求解.
【详解】
(1)阴影正方形的
解析:(1)5;(2);(3)2与3两个整数之间,见解析
【分析】
(1)通过割补法即可求出阴影正方形的面积;
(2)根据实数的性质即可求解;
(3)根据实数的估算即可求解.
【详解】
(1)阴影正方形的面积是3×3-4×=5
故答案为:5;
(2)设阴影正方形的边长为x,则x2=5
∴x=(-舍去)
故答案为:;
(3)∵
∴
∴阴影正方形的边长介于2与3两个整数之间.
【点睛】
本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小.
二十三、解答题
23.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.
【分析】
(1)过点作,根据平行线的性质即可求解;
(2)分两种情况:当点在上,当点在上,再过点作即可求解.
【详解】
(1)证明:
解析:(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.
【分析】
(1)过点作,根据平行线的性质即可求解;
(2)分两种情况:当点在上,当点在上,再过点作即可求解.
【详解】
(1)证明:如图,过点作,
∴,
∵,
∴.
∴.
∵,
∴,
∴.
(2)补全图形如图2、图3,
猜想:或.
证明:过点作.
∴.
∵,
∴
∴,
∴.
∵平分,
∴.
如图3,当点在上时,
∵平分,
∴,
∵,
∴,
即.
如图2,当点在上时,
∵平分,
∴.
∴.
即.
【点睛】
本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.
二十四、解答题
24.(1);(2)不变化,,理由见解析;(3)
【分析】
(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;
(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解
解析:(1);(2)不变化,,理由见解析;(3)
【分析】
(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;
(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解;
(3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案.
【详解】
(1)∵BC,BD分别评分和,
∴,
∴
又∵,
∴
∵,
∴
∴;
(2)∵,
∴,
又∵BD平分
∴,
∴;
∴与之间的数量关系保持不变;
(3)∵,
∴
又∵,
∴,
∵
∴
由(1)可得,
∴.
【点睛】
本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解.
二十五、解答题
25.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α – β,理由见解析.
【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C
解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α – β,理由见解析.
【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;
(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.
【问题探究】解:∠DPC=α+β
如图,
过P作PH∥DF
∵DF∥CE,
∴∠PCE=∠1=α, ∠PDF=∠2
∵∠DPC=∠2+∠1=α+β
【问题迁移】(1)70
(图1) ( 图2)
(2) 如图1,∠DPC=β -α
∵DF∥CE,
∴∠PCE=∠1=β,
∵∠DPC=∠1-∠FDP=∠1-α.
∴∠DPC=β -α
如图2,∠DPC= α -β
∵DF∥CE,
∴∠PDF=∠1=α
∵∠DPC=∠1-∠ACE=∠1-β.
∴∠DPC=α - β
展开阅读全文