收藏 分销(赏)

2022年人教版中学七7年级下册数学期末测试试卷(及答案).doc

上传人:精*** 文档编号:1724162 上传时间:2024-05-08 格式:DOC 页数:22 大小:437.54KB 下载积分:10 金币
下载 相关 举报
2022年人教版中学七7年级下册数学期末测试试卷(及答案).doc_第1页
第1页 / 共22页
2022年人教版中学七7年级下册数学期末测试试卷(及答案).doc_第2页
第2页 / 共22页


点击查看更多>>
资源描述
2022年人教版中学七7年级下册数学期末测试试卷(及答案) 一、选择题 1.的平方根是() A. B. C.± D.± 2.下列四幅图案中,通过平移能得到图案E的是(   ) A.A B.B C.C D.D 3.若点在第四象限,则点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列四个命题:①的平方根是;②是5的算术平方根;③经过一点有且只有一条直线与这条直线平行;④两条直线被第三条直线所截,同旁内角互补.其中真命题有( ) A.0个 B.1个 C.2个 D.3个 5.如图,如果AB∥EF,EF∥CD,下列各式正确的是( ) A.∠1+∠2−∠3=90° B.∠1−∠2+∠3=90° C.∠1+∠2+∠3=90° D.∠2+∠3−∠1=180° 6.下列计算正确的是( ) A. B. C. D. 7.如图,,平分,,则( ) A.112° B.126° C.136° D.146° 8.在平面直角坐标系中,对于点P(x,y),我们把点P'(1﹣y,x﹣1)叫做点P的友好点已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,…,这样依次得到点A1、A2、A3、A4…,若点A1的坐标为(3,2),则点A2020的坐标为(  ) A.(3,2) B.(﹣1,2) C.(﹣1,﹣2) D.(3,﹣2) 九、填空题 9.9的算术平方根是 . 十、填空题 10.已知点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,那么a+b=_____. 十一、填空题 11.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为_____. 十二、填空题 12.如图,∠B=∠C,∠A=∠D,有下列结论:①ABCD;②AEDF;③AE⊥BC;④∠AMC=∠BND.其中正确的有_____.(只填序号) 十三、填空题 13.如图,将长方形ABCD沿DE折叠,使点C落在边AB上的点F处,若,则________° 十四、填空题 14.实数a、b在数轴上所对应的点如图所示,则|﹣b|+|a+|+的值_____. 十五、填空题 15.在平面直角坐标系中,点P的坐标为,则点P在第________象限. 十六、填空题 16.如图,一个点在第一象限及轴、轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第42秒时质点所在位置的坐标是______. 十七、解答题 17.计算题: (1); (2) 十八、解答题 18.求满足下列各式x的值 (1)2x2﹣8=0; (2)(x﹣1)3=﹣4. 十九、解答题 19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC 证明:∵ ∠1+∠AFE=180° ∴ CD∥EF( , ) ∵∠A=∠2 ∴( ) ( , ) ∴ AB∥CD∥EF( , ) ∴ ∠A= ,∠C= , ( , ) ∵ ∠AFE =∠EFC+∠AFC ,∴ = . 二十、解答题 20.如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+2,y0+4),将△ABC作同样的平移得到△A1B1C1. (1)请画出△A1B1C1并写出点A1,B1,C1的坐标; (2)求△A1B1C1的面积; 二十一、解答题 21.已知:a是的小数部分,b是的小数部分. (1)求a、b的值; (2)求4a+4b+5的平方根. 二十二、解答题 22.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题. (1)阴影正方形的面积是________?(可利用割补法求面积) (2)阴影正方形的边长是________? (3)阴影正方形的边长介于哪两个整数之间?请说明理由. 二十三、解答题 23.如图,,直线与、分别交于点、,点在直线上,过点作,垂足为点. (1)如图1,求证:; (2)若点在线段上(不与、、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系;         二十四、解答题 24.如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且 (1)求的度数. (2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P运动到使时,求的度数. 二十五、解答题 25.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由; 【问题迁移】 如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β. (1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °. (2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC与α、β之间的数量关系,并说明理由. (图1) (图2) 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据平方根的定义开平方求解即可; 【详解】 解:∵, ∴的平方根是; 故答案选C. 【点睛】 本题主要考查了平方根的计算,准确计算是解题的关键. 2.B 【分析】 根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案. 【详解】 根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件 解析:B 【分析】 根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案. 【详解】 根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B; A,D选项改变了方向,故错误, C选项中,三角形和四边形位置不对,故C错误 故选:B 【点睛】 在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离. 3.A 【分析】 首先得出第四象限点的坐标性质,进而得出Q点的位置. 【详解】 解:∵点P(a,b)在第四象限, ∴a>0,b<0, ∴-b>0, ∴点Q(-b,a)在第一象限. 故选:A. 【点睛】 此题主要考查了点的坐标,正确把握各象限点的坐标特点是解题关键. 4.B 【分析】 根据算术平方根的概念、平方根的概念、平行公理、平行线的性质判断即可. 【详解】 解:①,3的平方根是,故原命题错误,是假命题,不符合题意; ②是5的算术平方根,正确,是真命题,符合题意; ③经过直线外一点,有且只有一条直线与这条直线平行,故原命题错误,是假命题,不符合题意; ④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,是假命题,不符合题意. 真命题只有②, 故选:B. 【点睛】 本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 5.D 【分析】 根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°. 【详解】 ∵EF∥CD ∴∠3=∠COE ∴∠3−∠1=∠COE−∠1=∠BOE ∵AB∥EF ∴∠2+∠BOE=180°,即∠2+∠3−∠1=180° 故选:D. 【点睛】 本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补. 6.B 【分析】 直接利用算术平方根的定义、立方根的定义以及绝对值的性质、合并同类项法则分别化简得出答案. 【详解】 A、=3,故此选项错误; B、,故此选项正确; C、|a|﹣a=0(a≥0),故此选项错误; D、4a﹣a=3a,故此选项错误; 故选:B. 【点睛】 此题主要考查了算术平方根的定义、立方根的定义以及绝对值的性质、合并同类项,正确掌握相关运算法则是解题关键. 7.D 【分析】 利用平行线的性质及角平分线的定义求解即可; 【详解】 解:∵,, ∴, ∵平分, ∴, ∵, ∴, 故选:D. 【点睛】 本题考查了平行线的性质,角平分线的定义;熟练掌握平行线的性质,并能进行推理计算是解决问题的关键. 8.D 【分析】 根据友好点的定义及点A1的坐标为(3,2),顺次写出几个友好点的坐标,可发现循环规律,据此可解. 【详解】 解:∵点A1的坐标为(3,2), ∴根据友好点的定义可得:A1(3,2),A 解析:D 【分析】 根据友好点的定义及点A1的坐标为(3,2),顺次写出几个友好点的坐标,可发现循环规律,据此可解. 【详解】 解:∵点A1的坐标为(3,2), ∴根据友好点的定义可得:A1(3,2),A2(-1,2),A3(-1,-2),A4(3,-2),A5(3,2),A6(-1,2),•••, ∴以此类推,每4个点为一个循环, ∵2020÷4=505, ∴点A2020的坐标与A4的坐标相同,为(3,-2). 故选D. 【点睛】 本题考查了规律型的点的坐标,从已知条件得出循环规律是解题的关键. 九、填空题 9.【分析】 根据一个正数的算术平方根就是其正的平方根即可得出. 【详解】 ∵, ∴9算术平方根为3. 故答案为3. 【点睛】 本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键. 解析:【分析】 根据一个正数的算术平方根就是其正的平方根即可得出. 【详解】 ∵, ∴9算术平方根为3. 故答案为3. 【点睛】 本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键. 十、填空题 10.-3. 【分析】 关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值. 【详解】 解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称, ∴, 解得, ∴a+b= 解析:-3. 【分析】 关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值. 【详解】 解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称, ∴, 解得, ∴a+b=﹣3, 故答案为:﹣3. 【点睛】 本题考查的是关于轴对称的两个点的坐标关系,掌握以上知识是解题的关键. 十一、填空题 11.4cm 【详解】 ∵BC=10cm,BD:DC=3:2, ∴BD=6cm,CD=4cm, ∵AD是△ABC的角平分线,∠ACB=90°, ∴点D到AB的距离等于DC,即点D到AB的距离等于4cm. 解析:4cm 【详解】 ∵BC=10cm,BD:DC=3:2, ∴BD=6cm,CD=4cm, ∵AD是△ABC的角平分线,∠ACB=90°, ∴点D到AB的距离等于DC,即点D到AB的距离等于4cm. 十二、填空题 12.①②④ 【分析】 根据平行线的判定与性质分析判断各项正确与否即可. 【详解】 解:∵∠B=∠C, ∴AB∥CD, ∴∠A=∠AEC, 又∵∠A=∠D, ∴∠AEC=∠D, ∴AE∥DF, ∴∠AMC 解析:①②④ 【分析】 根据平行线的判定与性质分析判断各项正确与否即可. 【详解】 解:∵∠B=∠C, ∴AB∥CD, ∴∠A=∠AEC, 又∵∠A=∠D, ∴∠AEC=∠D, ∴AE∥DF, ∴∠AMC=∠FNM, 又∵∠BND=∠FNM, ∴∠AMC=∠BND, 故①②④正确, 由条件不能得出∠AMC=90°,故③不一定正确; 故答案为:①②④. 【点睛】 本题考查了对顶角的性质及平行线的判定与性质,难度一般. 十三、填空题 13.5 【分析】 根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可. 【详解】 解:∵△DFE是由△DCE折叠得到的, ∴∠DEC=∠FE 解析:5 【分析】 根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可. 【详解】 解:∵△DFE是由△DCE折叠得到的, ∴∠DEC=∠FED, 又∵∠EFB=45°,∠B=90°, ∴∠BEF=45°, ∴∠DEC=(180°-45°)=67.5°. 故答案为:67.5. 【点睛】 本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键. 十四、填空题 14.﹣2a﹣b 【分析】 直接利用数轴结合绝对值以及平方根的性质化简得出答案. 【详解】 解:由数轴可得:a<﹣,0<b<, 故|﹣b|+|a+|+ =﹣b﹣(a+)﹣a =﹣b﹣a﹣﹣a =﹣2a﹣b 解析:﹣2a﹣b 【分析】 直接利用数轴结合绝对值以及平方根的性质化简得出答案. 【详解】 解:由数轴可得:a<﹣,0<b<, 故|﹣b|+|a+|+ =﹣b﹣(a+)﹣a =﹣b﹣a﹣﹣a =﹣2a﹣b. 故答案为:﹣2a﹣b. 【点睛】 此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键. 十五、填空题 15.三 【分析】 先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可. 【详解】 解:∵a2为非负数, ∴-a2-1为负数, ∴点P的符号为(-,-) ∴点P在第三象限. 故答案 解析:三 【分析】 先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可. 【详解】 解:∵a2为非负数, ∴-a2-1为负数, ∴点P的符号为(-,-) ∴点P在第三象限. 故答案为:三. 【点睛】 本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 十六、填空题 16.(6,6) 【分析】 根据质点移动的各点的坐标与时间的关系,找出规律即可解答. 【详解】 由题意可知质点移动的速度是1个单位长度╱秒, 到达(1,0)时用了3秒,到达(2,0)时用了4秒, 从(2, 解析:(6,6) 【分析】 根据质点移动的各点的坐标与时间的关系,找出规律即可解答. 【详解】 由题意可知质点移动的速度是1个单位长度╱秒, 到达(1,0)时用了3秒,到达(2,0)时用了4秒, 从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒, 从(0,3)到(3,0)有六个单位长度,则到(3,0)时用了9+6=15秒, 以此类推到(4,0)用了16秒,到(0,4)用了16+8=24秒,到(0,5)用了25秒,到(5,0)用了25+10=35秒, 故第42秒时质点到达的位置为(6,6), 故答案为:(6,6). 【点睛】 本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键. 十七、解答题 17.(1);(2) 【分析】 (1)先计算被开方数,再利用算术平方根的含义求解即可得到答案; (2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案. 【详解】 解 解析:(1);(2) 【分析】 (1)先计算被开方数,再利用算术平方根的含义求解即可得到答案; (2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案. 【详解】 解:(1), (2) 【点睛】 本题考查的是算术平方根的含义,含乘方的有理数的混合运算,掌握以上知识是解题的关键. 十八、解答题 18.(1)或者;(2) 【分析】 (1)根据求一个数的平方根解方程 (2)根据求一个数的立方根解方程 【详解】 (1)2x2﹣8=0, , , 解得或者; (2)(x﹣1)3=﹣4, , , 解得. 【 解析:(1)或者;(2) 【分析】 (1)根据求一个数的平方根解方程 (2)根据求一个数的立方根解方程 【详解】 (1)2x2﹣8=0, , , 解得或者; (2)(x﹣1)3=﹣4, , , 解得. 【点睛】 本题考查了求一个数的平方根和立方根,掌握平方根和立方根的概念是解题的关键. 十九、解答题 19.同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC . 【分析】 根据同旁 解析:同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC . 【分析】 根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可. 【详解】 证明:∵ ∠1+∠AFE=180° ∴ CD∥EF(同旁内角互补,两直线平行), ∵∠A=∠2 , ∴( AB∥CD ) (同位角相等,两直线平行), ∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行) ∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等) ∵ ∠AFE =∠EFC+∠AFC , ∴ ∠A = ∠C+∠AFC . 故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC . 【点睛】 本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键. 二十、解答题 20.(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2) 【分析】 (1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标. (2)利用分割法求解即可. 【详解】 解:(1 解析:(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2) 【分析】 (1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标. (2)利用分割法求解即可. 【详解】 解:(1)如图,A1B1C1并写即为所求作,A1(1,2),B1(0,0),C1(-2,3). (2)△A1B1C1的面积=3×3-×3×2-×1×2-×1×3=. 【点睛】 本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题. 二十一、解答题 21.(1)a=﹣3,b=4﹣;(2)±3. 【分析】 (1)根据3<<4,即可求出a、b的值; (2)把a,b代入代数式计算求值,再求平方根即可. 【详解】 解:(1)∵3<<4, ∴11<8+<12, 解析:(1)a=﹣3,b=4﹣;(2)±3. 【分析】 (1)根据3<<4,即可求出a、b的值; (2)把a,b代入代数式计算求值,再求平方根即可. 【详解】 解:(1)∵3<<4, ∴11<8+<12,4<8﹣<5, ∵a是的小数部分,b是的小数部分, ∴a=8+﹣11=﹣3,b=8﹣﹣4=4﹣. (2), ∴4a+4b+5的平方根为:=±3. 【点睛】 本题考查了无理数的估算,求一个数的平方根等知识,能熟练估算的近似值,进而求出a、b的值是解题关键. 二十二、解答题 22.(1)5;(2);(3)2与3两个整数之间,见解析 【分析】 (1)通过割补法即可求出阴影正方形的面积; (2)根据实数的性质即可求解; (3)根据实数的估算即可求解. 【详解】 (1)阴影正方形的 解析:(1)5;(2);(3)2与3两个整数之间,见解析 【分析】 (1)通过割补法即可求出阴影正方形的面积; (2)根据实数的性质即可求解; (3)根据实数的估算即可求解. 【详解】 (1)阴影正方形的面积是3×3-4×=5 故答案为:5; (2)设阴影正方形的边长为x,则x2=5 ∴x=(-舍去) 故答案为:; (3)∵ ∴ ∴阴影正方形的边长介于2与3两个整数之间. 【点睛】 本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小. 二十三、解答题 23.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,. 【分析】 (1)过点作,根据平行线的性质即可求解; (2)分两种情况:当点在上,当点在上,再过点作即可求解. 【详解】 (1)证明: 解析:(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,. 【分析】 (1)过点作,根据平行线的性质即可求解; (2)分两种情况:当点在上,当点在上,再过点作即可求解. 【详解】 (1)证明:如图,过点作, ∴, ∵, ∴. ∴. ∵, ∴, ∴. (2)补全图形如图2、图3, 猜想:或. 证明:过点作.     ∴. ∵, ∴ ∴, ∴. ∵平分, ∴. 如图3,当点在上时, ∵平分, ∴, ∵, ∴, 即. 如图2,当点在上时, ∵平分, ∴. ∴. 即. 【点睛】 本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系. 二十四、解答题 24.(1);(2)不变化,,理由见解析;(3) 【分析】 (1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案; (2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解 解析:(1);(2)不变化,,理由见解析;(3) 【分析】 (1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案; (2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解; (3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案. 【详解】 (1)∵BC,BD分别评分和, ∴, ∴ 又∵, ∴ ∵, ∴ ∴; (2)∵, ∴, 又∵BD平分 ∴, ∴; ∴与之间的数量关系保持不变; (3)∵, ∴ 又∵, ∴, ∵ ∴ 由(1)可得, ∴. 【点睛】 本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解. 二十五、解答题 25.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α – β,理由见解析. 【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C 解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α – β,理由见解析. 【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案; (2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案. 【问题探究】解:∠DPC=α+β 如图, 过P作PH∥DF ∵DF∥CE, ∴∠PCE=∠1=α, ∠PDF=∠2 ∵∠DPC=∠2+∠1=α+β 【问题迁移】(1)70 (图1) ( 图2) (2) 如图1,∠DPC=β -α ∵DF∥CE, ∴∠PCE=∠1=β, ∵∠DPC=∠1-∠FDP=∠1-α. ∴∠DPC=β -α 如图2,∠DPC= α -β ∵DF∥CE, ∴∠PDF=∠1=α ∵∠DPC=∠1-∠ACE=∠1-β. ∴∠DPC=α - β
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服