收藏 分销(赏)

2025年备战中考数学备考之平行四边形压轴突破训练∶培优易错试卷篇附答案解析.doc

上传人:知****运 文档编号:13010840 上传时间:2026-01-05 格式:DOC 页数:25 大小:1.24MB 下载积分:10 金币
下载 相关 举报
2025年备战中考数学备考之平行四边形压轴突破训练∶培优易错试卷篇附答案解析.doc_第1页
第1页 / 共25页
2025年备战中考数学备考之平行四边形压轴突破训练∶培优易错试卷篇附答案解析.doc_第2页
第2页 / 共25页


点击查看更多>>
资源描述
-备战中考数学备考之平行四边形压轴突破训练∶培优易错试卷篇附答案解析(1) 一、平行四边形 1.如图1,四边形ABCD是正方形,G是CD边上一种动点(点G与C、D不重叠),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE. (1)①猜想图1中线段BG、线段DE长度关系及所在直线位置关系,不必证明; ②将图1中正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观测、测量等措施判断①中得到结论与否仍然成立,并证明你判断. (2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到结论哪些成立,哪些不成立?若成立,以图4为例简要阐明理由. (3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=,求BE2+DG2值. 【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25. 【解析】 分析:(1)①根据正方形性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间关系; ②结合正方形性质,根据SAS仍然可以判定△BCG≌△DCE,从而证明结论; (2)根据两条对应边比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中位置关系仍然成立; (3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形长、宽平方和. 详解:(1)①BG⊥DE,BG=DE; ②∵四边形ABCD和四边形CEFG是正方形, ∴BC=DC,CG=CE,∠BCD=∠ECG=90°, ∴∠BCG=∠DCE, ∴△BCG≌△DCE, ∴BG=DE,∠CBG=∠CDE, 又∵∠CBG+∠BHC=90°, ∴∠CDE+∠DHG=90°, ∴BG⊥DE. (2)∵AB=a,BC=b,CE=ka,CG=kb, ∴, 又∵∠BCG=∠DCE, ∴△BCG∽△DCE, ∴∠CBG=∠CDE, 又∵∠CBG+∠BHC=90°, ∴∠CDE+∠DHG=90°, ∴BG⊥DE. (3)连接BE、DG. 根据题意,得AB=3,BC=2,CE=1.5,CG=1, ∵BG⊥DE,∠BCD=∠ECG=90° ∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25. 点睛:此题综合运用了全等三角形判定和性质、相似三角形判定和性质以及勾股定理. 2.已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动. (1)如图1,当b=2a,点M运动到边AD中点时,请证明∠BMC=90°; (2)如图2,当b>2a时,点M在运动过程中,与否存在∠BMC=90°,若存在,请给与证明;若不存在,请阐明理由; (3)如图3,当b<2a时,(2)中结论与否仍然成立?请阐明理由. 【答案】(1)见解析; (2)存在,理由见解析; (3)不成立.理由如下见解析. 【解析】 试题分析:(1)由b=2a,点M是AD中点,可得AB=AM=MD=DC=a,又由四边形ABCD是矩形,即可求得∠AMB=∠DMC=45°,则可求得∠BMC=90°; (2)由∠BMC=90°,易证得△ABM∽△DMC,设AM=x,根据相似三角形对应边成比例,即可得方程:x2﹣bx+a2=0,由b>2a,a>0,b>0,即可判定△>0,即可确定方程有两个不相等实数根,且两根均不小于零,符合题意; (3)由(2),当b<2a,a>0,b>0,判定方程x2﹣bx+a2=0根状况,即可求得答案. 试题解析:(1)∵b=2a,点M是AD中点, ∴AB=AM=MD=DC=a, 又∵在矩形ABCD中,∠A=∠D=90°, ∴∠AMB=∠DMC=45°, ∴∠BMC=90°. (2)存在, 理由:若∠BMC=90°, 则∠AMB+∠DMC=90°, 又∵∠AMB+∠ABM=90°, ∴∠ABM=∠DMC, 又∵∠A=∠D=90°, ∴△ABM∽△DMC, ∴, 设AM=x,则, 整理得:x2﹣bx+a2=0, ∵b>2a,a>0,b>0, ∴△=b2﹣4a2>0, ∴方程有两个不相等实数根,且两根均不小于零,符合题意, ∴当b>2a时,存在∠BMC=90°, (3)不成立. 理由:若∠BMC=90°, 由(2)可知x2﹣bx+a2=0, ∵b<2a,a>0,b>0, ∴△=b2﹣4a2<0, ∴方程没有实数根, ∴当b<2a时,不存在∠BMC=90°,即(2)中结论不成立. 考点:1、相似三角形判定与性质;2、根鉴别式;3、矩形性质 3.如图,在等腰中,,点E在AC上且不与点A、C重叠,在外部作等腰,使,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF. 请直接写出线段AF,AE数量关系; 将绕点C逆时针旋转,当点E在线段BC上时,如图,连接AE,请判断线段AF,AE数量关系,并证明你结论; 若,,在图基础上将绕点C继续逆时针旋转一周过程中,当平行四边形ABFD为菱形时,直接写出线段AE长度. 【答案】(1)证明见解析;(2)①②或. 【解析】 【分析】 如图中,结论:,只要证明是等腰直角三角形即可; 如图中,结论:,连接EF,DF交BC于K,先证明≌再证明是等腰直角三角形即可; 分两种情形a、如图中,当时,四边形ABFD是菱形、如图中当时,四边形ABFD是菱形分别求解即可. 【详解】 如图中,结论:. 理由:四边形ABFD是平行四边形, , , , , , , 是等腰直角三角形, . 故答案为. 如图中,结论:. 理由:连接EF,DF交BC于K. 四边形ABFD是平行四边形, , , ,, , , , , , , 在和中, , ≌, ,, , 是等腰直角三角形, . 如图中,当时,四边形ABFD是菱形,设AE交CD于H,易知,,, 如图中当时,四边形ABFD是菱形,易知, 综上所述,满足条件AE长为或. 【点睛】 本题考察四边形综合题、全等三角形判定和性质、等腰直角三角形判定和性质、平行四边形性质、勾股定理等知识,解题关键是纯熟掌握全等三角形判定和性质,寻找全等条件是解题难点,属于中考常考题型. 4.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C对应点分别为D,E,F. (1)如图①,当点D落在BC边上时,求点D坐标; (2)如图②,当点D落在线段BE上时,AD与BC交于点H. ①求证△ADB≌△AOB; ②求点H坐标. (3)记K为矩形AOBC对角线交点,S为△KDE面积,求S取值范围(直接写出成果即可). 【答案】(1)D(1,3);(2)①详见解析;②H(,3);(3)≤S≤. 【解析】 【分析】 (1)如图①,在Rt△ACD中求出CD即可处理问题; (2)①根据HL证明即可; ②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可处理问题; (3)如图③中,当点D在线段BK上时,△DEK面积最小,当点D在BA延长线上时,△D′E′K面积最大,求出面积最小值以及最大值即可处理问题; 【详解】 (1)如图①中, ∵A(5,0),B(0,3), ∴OA=5,OB=3, ∵四边形AOBC是矩形, ∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°, ∵矩形ADEF是由矩形AOBC旋转得到, ∴AD=AO=5, 在Rt△ADC中,CD==4, ∴BD=BC-CD=1, ∴D(1,3). (2)①如图②中, 由四边形ADEF是矩形,得到∠ADE=90°, ∵点D在线段BE上, ∴∠ADB=90°, 由(1)可知,AD=AO,又AB=AB,∠AOB=90°, ∴Rt△ADB≌Rt△AOB(HL). ②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO, 又在矩形AOBC中,OA∥BC, ∴∠CBA=∠OAB, ∴∠BAD=∠CBA, ∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m, 在Rt△AHC中,∵AH2=HC2+AC2, ∴m2=32+(5-m)2, ∴m=, ∴BH=, ∴H(,3). (3)如图③中,当点D在线段BK上时,△DEK面积最小,最小值=•DE•DK=×3×(5-)=, 当点D在BA延长线上时,△D′E′K面积最大,最大面积=×D′E′×KD′=×3×(5+)=. 综上所述,≤S≤. 【点睛】 本题考察四边形综合题、矩形性质、勾股定理、全等三角形判定和性质、旋转变换等知识,解题关键是理解题意,灵活运用所学知识处理问题,学会运用参数构建方程处理问题. 5.已知:在菱形ABCD中,E,F是BD上两点,且AE∥CF. 求证:四边形AECF是菱形. 【答案】见解析 【解析】 【分析】 由菱形性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形判定和菱形判定可得四边形AECF是菱形. 【详解】 证明:∵四边形ABCD是菱形 ∴AB∥CD,AB=CD,∠ADF=∠CDF, ∵AB=CD,∠ADF=∠CDF,DF=DF ∴△ADF≌△CDF(SAS) ∴AF=CF, ∵AB∥CD,AE∥CF ∴∠ABE=∠CDF,∠AEF=∠CFE ∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD ∴△ABE≌△CDF(AAS) ∴AE=CF,且AE∥CF ∴四边形AECF是平行四边形 又∵AF=CF, ∴四边形AECF是菱形 【点睛】 本题重要考察菱形判定定理,首先要判定其为平行四边形,这是菱形判定基本判定. 6.已知:如图,在平行四边形ABCD中,O为对角线BD中点,过点O直线EF分别交AD,BC于E,F两点,连结BE,DF. (1)求证:△DOE≌△BOF. (2)当∠DOE等于多少度时,四边形BFDE为菱形?请阐明理由. 【答案】(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析. 【解析】 试题分析:(1)运用平行四边形性质以及全等三角形判定措施得出△DOE≌△BOF(ASA); (2)首先运用一组对边平行且相等四边形是平行四边形得出四边形EBFD是平行四边形,进而运用垂直平分线性质得出BE=ED,即可得出答案. 试题解析:(1)∵在▱ABCD中,O为对角线BD中点, ∴BO=DO,∠EDB=∠FBO, 在△EOD和△FOB中 , ∴△DOE≌△BOF(ASA); (2)当∠DOE=90°时,四边形BFDE为菱形, 理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形, ∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形. 考点:平行四边形性质;全等三角形判定与性质;菱形判定. 7.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°. (1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF; (2)若直线EF与AB,AD延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2; (3)将正方形改为长与宽不相等矩形,若其他条件不变(如图③),请你直接写出线段EF,BE,DF之间数量关系. 【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2. 【解析】 试题分析:(1)根据旋转性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF; (2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,运用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2; (3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF. 试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG, ∴AF=AG,∠FAG=90°, ∵∠EAF=45°, ∴∠GAE=45°, 在△AGE与△AFE中, , ∴△AGE≌△AFE(SAS); (2)设正方形ABCD边长为a. 将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM. 则△ADF≌△ABG,DF=BG. 由(1)知△AEG≌△AEF, ∴EG=EF. ∵∠CEF=45°, ∴△BME、△DNF、△CEF均为等腰直角三角形, ∴CE=CF,BE=BM,NF=DF, ∴a﹣BE=a﹣DF, ∴BE=DF, ∴BE=BM=DF=BG, ∴∠BMG=45°, ∴∠GME=45°+45°=90°, ∴EG2=ME2+MG2, ∵EG=EF,MG=BM=DF=NF, ∴EF2=ME2+NF2; (3)EF2=2BE2+2DF2. 如图所示,延长EF交AB延长线于M点,交AD延长线于N点, 将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE. 由(1)知△AEH≌△AEF, 则由勾股定理有(GH+BE)2+BG2=EH2, 即(GH+BE)2+(BM﹣GM)2=EH2 又∴EF=HE,DF=GH=GM,BE=BM,因此有(GH+BE)2+(BE﹣GH)2=EF2, 即2(DF2+BE2)=EF2 考点:四边形综合题 8.如图,ABCD是正方形,点G是BC上任意一点,DE⊥AG于E,BF∥DE,交AG于F. 求证:AF=BF+EF. 【答案】详见解析. 【解析】 【分析】 由四边形ABCD为正方形,可得出∠BAD为90°,AB=AD,进而得到∠BAG与∠EAD互余,又DE垂直于AG,得到∠EAD与∠ADE互余,根据同角余角相等可得出∠ADE=∠BAF,运用AAS可得出△ABF≌△DAE;运用全等三角对应边相等可得出BF=AE,由AF-AE=EF,等量代换可得证. 【详解】 ∵ABCD是正方形, ∴AD=AB,∠BAD=90° ∵DE⊥AG, ∴∠DEG=∠AED=90° ∴∠ADE+∠DAE=90° 又∵∠BAF+∠DAE=∠BAD=90°, ∴∠ADE=∠BAF. ∵BF∥DE, ∴∠AFB=∠DEG=∠AED. 在△ABF与△DAE中, , ∴△ABF≌△DAE(AAS). ∴BF=AE. ∵AF=AE+EF, ∴AF=BF+EF. 点睛:此题考察了正方形性质,全等三角形判定与性质,矩形判定与性质,纯熟掌握判定与性质是解本题关键. 9.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形边BC,CD上. (1)证明:BE=CF. (2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF面积与否发生变化?若不变,求出这个定值;假如变化,求出其最大值. (3)在(2)状况下,请探究△CEF面积与否发生变化?若不变,求出这个定值;假如变化,求出其最大值. 【答案】(1)见解析;(2);(3)见解析 【解析】 试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF; (2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题; (3)当正三角形AEF边AE与BC垂直时,边AE最短.△AEF面积会伴随AE变化而变化,且当AE最短时,正三角形AEF面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF面积就会最大. 试题解析:(1)证明:连接AC, ∵∠1+∠2=60°,∠3+∠2=60°, ∴∠1=∠3, ∵∠BAD=120°, ∴∠ABC=∠ADC=60° ∵四边形ABCD是菱形, ∴AB=BC=CD=AD, ∴△ABC、△ACD为等边三角形 ∴∠4=60°,AC=AB, ∴在△ABE和△ACF中, , ∴△ABE≌△ACF.(ASA) ∴BE=CF. (2)解:由(1)得△ABE≌△ACF, 则S△ABE=S△ACF. 故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC, 是定值. 作AH⊥BC于H点, 则BH=2, S四边形AECF=S△ABC = = =; (3)解:由“垂线段最短”可知, 当正三角形AEF边AE与BC垂直时,边AE最短. 故△AEF面积会伴随AE变化而变化,且当AE最短时, 正三角形AEF面积会最小, 又S△CEF=S四边形AECF﹣S△AEF,则△CEF面积就会最大. 由(2)得,S△CEF=S四边形AECF﹣S△AEF =﹣=. 点睛:本题考察了菱形每一条对角线平分一组对角性质,考察了全等三角形证明和全等三角形对应边相等性质,考察了三角形面积计算,本题中求证△ABE≌△ACF是解题关键. 10.已知AD是△ABC中线P是线段AD上一点(不与点A、D重叠),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC中点,AD与EF交于点M; (1)如图1,当AB=AC时,求证:四边形EGHF是矩形; (2)如图2,当点P与点M重叠时,在不添加任何辅助线条件下,写出所有与△BPE面积相等三角形(不包括△BPE自身). 【答案】(1)见解析;(2)△APE、△APF、△CPF、△PGH. 【解析】 【分析】 (1)由三角形中位线定理得出EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,推出EF∥GH,EF=GH,证得四边形EGHF是平行四边形,证得EF⊥AP,推出EF⊥EG,即可得出结论; (2)由△APE与△BPE底AE=BE,又等高,得出S△APE=S△BPE,由△APE与△APF底EP=FP,又等高,得出S△APE=S△APF,由△APF与△CPF底AF=CF,又等高,得出S△APF=S△CPF,证得△PGH底边GH上高等于△AEF底边EF上高二分之一,推出S△PGH=S△AEF=S△APF,即可得出成果. 【详解】 (1)证明:∵E、F、G、H分别是AB、AC、PB、PC中点, ∴EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC, ∴EF∥GH,EF=GH, ∴四边形EGHF是平行四边形, ∵AB=AC, ∴AD⊥BC, ∴EF⊥AP, ∵EG∥AP, ∴EF⊥EG, ∴平行四边形EGHF是矩形; (2)∵PE是△APB中线, ∴△APE与△BPE底AE=BE,又等高, ∴S△APE=S△BPE, ∵AP是△AEF中线, ∴△APE与△APF底EP=FP,又等高, ∴S△APE=S△APF, ∴S△APF=S△BPE, ∵PF是△APC中线, ∴△APF与△CPF底AF=CF,又等高, ∴S△APF=S△CPF, ∴S△CPF=S△BPE, ∵EF∥GH∥BC,E、F、G、H分别是AB、AC、PB、PC中点, ∴△AEF底边EF上高等于△ABC底边BC上高二分之一,△PGH底边GH上高等于△PBC底边BC上高二分之一, ∴△PGH底边GH上高等于△AEF底边EF上高二分之一, ∵GH=EF, ∴S△PGH=S△AEF=S△APF, 综上所述,与△BPE面积相等三角形为:△APE、△APF、△CPF、△PGH. 【点睛】 本题考察了矩形判定与性质、平行四边形判定、三角形中位线定理、平行线性质、三角形面积计算等知识,纯熟掌握三角形中位线定理是处理问题关键. 11.如图1,在正方形ABCD中,AD=6,点P是对角线BD上任意一点,连接PA,PC过点P作PE⊥PC交直线AB于E. (1) 求证:PC=PE; (2) 延长AP交直线CD于点F. ①如图2,若点F是CD中点,求△APE面积; ②若ΔAPE面积是,则DF长为 (3) 如图3,点E在边AB上,连接EC交BD于点M,作点E有关BD对称点Q,连接PQ,MQ,过点P作PN∥CD交EC于点N,连接QN,若PQ=5,MN=,则△MNQ面积是 【答案】(1)略;(2)①8,②4或9;(3) 【解析】 【分析】 (1)运用正方形每个角都是90°,对角线平分对角性质,三角形外角等于和它不相邻两个内角和,等角对等边等性质容易得证; (2)作出△ADP和△DFP高,由面积法容易求出这个高值.从而得到△PAE底和高,并求出面积.第2小问思绪同样,通过面积法列出方程求解即可; (3)根据已经条件证出△MNQ是直角三角形,计算直角边乘积二分之一可得其面积. 【详解】 (1) 证明:∵点P在对角线BD上, ∴△ADP≌△CDP, ∴AP=CP, ∠DAP =∠DCP, ∵PE⊥PC,∴∠EPC=∠EPB+∠BPC=90°, ∵∠PEA=∠EBP+∠EPB=45°+90°-∠BPC=135°-∠BPC, ∵∠PAE=90°-∠DAP=90°-∠DCP, ∠DCP=∠BPC-∠PDC=∠BPC-45°, ∴∠PAE=90°-(∠BPC-45°)= 135°-∠BPC, ∴∠PEA=∠PAE, ∴PC=PE; (2)①如图2,过点P分别作PH⊥AD,PG⊥CD,垂足分别为H、G.延长GP交AB于点M. ∵四边形ABCD是正方形,P在对角线上, ∴四边形HPGD是正方形, ∴PH=PG,PM⊥AB, 设PH=PG=a, ∵F是CD中点,AD=6,则FD=3,=9, ∵==, ∴,解得a=2, ∴AM=HP=2,MP=MG-PG=6-2=4, 又∵PA=PE, ∴AM=EM,AE=4, ∵=, ②设HP=b,由①可得AE=2b,MP=6-b, ∴=, 解得b=2.4, ∵==, ∴, ∴当b=2.4时,DF=4;当b=3.6时,DF=9, 即DF长为4或9; (3)如图, ∵E、Q有关BP对称,PN∥CD, ∴∠1=∠2,∠2+∠3=∠BDC=45°, ∴∠1+∠4=45°, ∴∠3=∠4, 易证△PEM≌△PQM, △PNQ≌△PNC, ∴∠5=∠6, ∠7=∠8 ,EM=QM,NQ=NC, ∴∠6+∠7=90°, ∴△MNQ是直角三角形, 设EM=a,NC=b列方程组 , 可得ab=, ∴, 【点睛】 本题是四边形综合题目,考察了正方形性质、等腰直角三角形判定与性质、全等三角形判定与性质等知识;本题综合性强,有一定难度,纯熟掌握正方形性质,证明三角形全等是处理问题关键.要注意运用数形结合思想. 12.如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF⊥EC,且EF=EC. (1)求证:△AEF≌△DCE. (2)若DE=4cm,矩形ABCD周长为32cm,求AE长. 【答案】(1)证明见解析;(2)6cm. 【解析】 分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再运用AAS即可求证△AEF≌△DCE. (2)运用全等三角形性质,对应边相等,再根据矩形ABCD周长为32cm,即可求得AE长. 详解:(1)证明:∵EF⊥CE, ∴∠FEC=90°, ∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°, ∴∠AEF=∠ECD. 在Rt△AEF和Rt△DEC中, ∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC. ∴△AEF≌△DCE. (2)解:∵△AEF≌△DCE. AE=CD. AD=AE+4. ∵矩形ABCD周长为32cm, ∴2(AE+AE+4)=32. 解得,AE=6(cm). 答:AE长为6cm. 点睛:此题重要考察学生对全等三角形判定与性质和矩形性质等知识点理解和掌握,难易程度适中,是一道很经典题目. 13.如图1,在正方形ABCD中,点E,F分别是边BC,AB上点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC. (1)请判断:FG与CE关系是___; (2)如图2,若点E,F分别是边CB,BA延长线上点,其他条件不变,(1)中结论与否仍然成立?请作出判断并予以证明; (3)如图3,若点E,F分别是边BC,AB延长线上点,其他条件不变,(1)中结论与否仍然成立?请直接写出你判断. 【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立. 【解析】 试题分析:(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE; (2)构造辅助线后证明△HGE≌△CED,运用对应边相等求证四边形GHBF是矩形后,运用等量代换即可求出FG=C,FG∥CE; (3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形. 试题解析:解:(1)FG=CE,FG∥CE; (2)过点G作GH⊥CB延长线于点H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE与△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC; (3)∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF与△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE. 14.问题探究 (1)如图①,已知正方形ABCD边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN位置关系,并证明你结论. (2)如图②,已知正方形ABCD边长为4.点M和N分别从点B、C同步出发,以相似速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长最大值; 问题处理 (3)如图③,AC为边长为2菱形ABCD对角线,∠ABC=60°.点M和N分别从点B、C同步出发,以相似速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长最大值. 【答案】(1)AM⊥BN,证明见解析;(2)△APB周长最大值4+4;(3)△PAB周长最大值=2+4. 【解析】 试题分析:根据全等三角形判定SAS证明△ABM≌△BCN,即可证得AM⊥BN; (2)如图②,以AB为斜边向外作等腰直角△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP,证明PA+PB=2EF,求出EF最大值即可; (3)如图③,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB,证明PA+PB=PK,求出PK最大值即可. 试题解析:(1)结论:AM⊥BN. 理由:如图①中, ∵四边形ABCD是正方形, ∴AB=BC,∠ABM=∠BCN=90°, ∵BM=CN, ∴△ABM≌△BCN, ∴∠BAM=∠CBN, ∵∠CBN+∠ABN=90°, ∴∠ABN+∠BAM=90°, ∴∠APB=90°, ∴AM⊥BN. (2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP. ∵∠EFP=∠FPG=∠G=90°, ∴四边形EFPG是矩形, ∴∠FEG=∠AEB=90°, ∴∠AEF=∠BEG, ∵EA=EB,∠EFA=∠G=90°, ∴△AEF≌△BEG, ∴EF=EG,AF=BG, ∴四边形EFPG是正方形, ∴PA+PB=PF+AF+PG﹣BG=2PF=2EF, ∵EF≤AE, ∴EF最大值=AE=2, ∴△APB周长最大值=4+4. (3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB. ∵AB=BC,∠ABM=∠BCN,BM=CN, ∴△ABM≌△BCN, ∴∠BAM=∠CBN, ∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60°, ∴∠APB=120°, ∵∠AKB=60°, ∴∠AKB+∠APB=180°, ∴A、K、B、P四点共圆, ∴∠BPH=∠KAB=60°, ∵PH=PB, ∴△PBH是等边三角形, ∴∠KBA=∠HBP,BH=BP, ∴∠KBH=∠ABP,∵BK=BA, ∴△KBH≌△ABP, ∴HK=AP, ∴PA+PB=KH+PH=PK, ∴PK值最大时,△APB周长最大, ∴当PK是△ABK外接圆直径时,PK值最大,最大值为4, ∴△PAB周长最大值=2+4. 15.在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重叠,折痕为EF,连接DF. (1)阐明△BEF是等腰三角形; (2)求折痕EF长. 【答案】(1)见解析;(2). 【解析】 【分析】 (1)根据折叠得出∠DEF=∠BEF,根据矩形性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可; (2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可. 【详解】 (1)∵现将纸片折叠,使点D与点B重叠,折痕为EF,∴∠DEF=∠BEF. ∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形; (2)过E作EM⊥BC于M,则四边形ABME是矩形,因此EM=AB=6,AE=BM. ∵现将纸片折叠,使点D与点B重叠,折痕为EF,∴DE=BE,DO=BO,BD⊥EF. ∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°. 在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=. 在Rt△EMF中,由勾股定理得:EF==. 故答案为:. 【点睛】 本题考察了折叠性质和矩形性质、勾股定理等知识点,能熟记折叠性质是解答此题关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服