资源描述
-全国中考数学平行四边形综合中考真题分类汇总含详细答案
一、平行四边形
1.在四边形中,,对角线平分.
(1)如图1,若,且,试探究边、与对角线数量关系并阐明理由.
(2)如图2,若将(1)中条件“”去掉,(1)中结论与否成立?请阐明理由.
(3)如图3,若,探究边、与对角线数量关系并阐明理由.
【答案】(1).证明见解析;(2)成立;(3).理由见解析.
【解析】
试题分析:(1)结论:AC=AD+AB,只要证明AD=AC,AB=AC即可处理问题;
(2)(1)中结论成立.以C为顶点,AC为一边作∠ACE=60°,∠ACE另一边交AB延长线于点E,只要证明△DAC≌△BEC即可处理问题;
(3)结论:AD+AB=AC.过点C作CE⊥AC交AB延长线于点E,只要证明△ACE是等腰直角三角形,△DAC≌△BEC即可处理问题;
试题解析:解:(1)AC=AD+AB.
理由如下:如图1中,
在四边形ABCD中,∠D+∠B=180°,∠B=90°,
∴∠D=90°,
∵∠DAB=120°,AC平分∠DAB,
∴∠DAC=∠BAC=60°,
∵∠B=90°,
∴AB=AC,同理AD=AC.
∴AC=AD+AB.
(2)(1)中结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE另一边交AB延长线于点E,
∵∠BAC=60°,
∴△AEC为等边三角形,
∴AC=AE=CE,
∵∠D+∠ABC=180°,∠DAB=120°,
∴∠DCB=60°,
∴∠DCA=∠BCE,
∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,
∴∠D=∠CBE,∵CA=CE,
∴△DAC≌△BEC,
∴AD=BE,
∴AC=AD+AB.
(3)结论:AD+AB=AC.理由如下:
过点C作CE⊥AC交AB延长线于点E,∵∠D+∠B=180°,∠DAB=90°,
∴DCB=90°,
∵∠ACE=90°,
∴∠DCA=∠BCE,
又∵AC平分∠DAB,
∴∠CAB=45°,
∴∠E=45°.
∴AC=CE.
又∵∠D+∠ABC=180°,∠D=∠CBE,
∴△CDA≌△CBE,
∴AD=BE,
∴AD+AB=AE.
在Rt△ACE中,∠CAB=45°,
∴AE=
∴.
2.在图1中,正方形ABCD边长为a,等腰直角三角形FAE斜边AE=2b,且边AD和AE在同一直线上.
操作示例
当2b<a时,如图1,在BA上选用点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD位置构成四边形FGCH.
思考发现
小明在操作后发现:该剪拼措施就是先将△FAG绕点F逆时针旋转90°到△FEH位置,易知EH与AD在同一直线上.连结CH,由剪拼措施可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD位置.这样,对于剪拼得到四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),运用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形判定措施,可以判断出四边形FGCH是正方形.
实践探究
(1)正方形FGCH面积是 ;(用含a, b式子表达)
(2)类比图1剪拼措施,请你就图2—图4三种情形分别画出剪拼成一种新正方形示意图.
联想拓展
小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选用点G位置在BA方向上伴随b增大不停上移.当b>a时(如图5),能否剪拼成一种正方形?若能,请你在图5中画出剪拼成正方形示意图;若不能,简要阐明理由.
【答案】(1)a2+b2;(2)见解析;联想拓展:能剪拼成正方形.见解析.
【解析】分析:实践探究:根据正方形FGCH面积=BG2+BC2进而得出答案;
应采用类比措施,注意无论等腰直角三角形大小怎样变化,BG永远等于等腰直角三角形斜边二分之一.注意当b=a时,也可直接沿正方形对角线分割.
详解:实践探究:正方形面积是:BG2+BC2=a2+b2;
剪拼措施如图2-图4;
联想拓展:能,
剪拼措施如图5(图中BG=DH=b).
.
点睛:本题考察了几何变换综合,培养学生推理论证能力和动手操作能力;运用类比措施作图时,应根据范例抓住作图关键:作线段长度与某条线段比值永远相等,旋转三角形,连接点都应是相似.
3.如图,在等腰中,,点E在AC上且不与点A、C重叠,在外部作等腰,使,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
请直接写出线段AF,AE数量关系;
将绕点C逆时针旋转,当点E在线段BC上时,如图,连接AE,请判断线段AF,AE数量关系,并证明你结论;
若,,在图基础上将绕点C继续逆时针旋转一周过程中,当平行四边形ABFD为菱形时,直接写出线段AE长度.
【答案】(1)证明见解析;(2)①②或.
【解析】
【分析】
如图中,结论:,只要证明是等腰直角三角形即可;
如图中,结论:,连接EF,DF交BC于K,先证明≌再证明是等腰直角三角形即可;
分两种情形a、如图中,当时,四边形ABFD是菱形、如图中当时,四边形ABFD是菱形分别求解即可.
【详解】
如图中,结论:.
理由:四边形ABFD是平行四边形,
,
,
,
,
,
,
是等腰直角三角形,
.
故答案为.
如图中,结论:.
理由:连接EF,DF交BC于K.
四边形ABFD是平行四边形,
,
,
,,
,
,
,
,
,
,
在和中,
,
≌,
,,
,
是等腰直角三角形,
.
如图中,当时,四边形ABFD是菱形,设AE交CD于H,易知,,,
如图中当时,四边形ABFD是菱形,易知,
综上所述,满足条件AE长为或.
【点睛】
本题考察四边形综合题、全等三角形判定和性质、等腰直角三角形判定和性质、平行四边形性质、勾股定理等知识,解题关键是纯熟掌握全等三角形判定和性质,寻找全等条件是解题难点,属于中考常考题型.
4.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C对应点分别为D,E,F.
(1)如图①,当点D落在BC边上时,求点D坐标;
(2)如图②,当点D落在线段BE上时,AD与BC交于点H.
①求证△ADB≌△AOB;
②求点H坐标.
(3)记K为矩形AOBC对角线交点,S为△KDE面积,求S取值范围(直接写出成果即可).
【答案】(1)D(1,3);(2)①详见解析;②H(,3);(3)≤S≤.
【解析】
【分析】
(1)如图①,在Rt△ACD中求出CD即可处理问题;
(2)①根据HL证明即可;
②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可处理问题;
(3)如图③中,当点D在线段BK上时,△DEK面积最小,当点D在BA延长线上时,△D′E′K面积最大,求出面积最小值以及最大值即可处理问题;
【详解】
(1)如图①中,
∵A(5,0),B(0,3),
∴OA=5,OB=3,
∵四边形AOBC是矩形,
∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,
∵矩形ADEF是由矩形AOBC旋转得到,
∴AD=AO=5,
在Rt△ADC中,CD==4,
∴BD=BC-CD=1,
∴D(1,3).
(2)①如图②中,
由四边形ADEF是矩形,得到∠ADE=90°,
∵点D在线段BE上,
∴∠ADB=90°,
由(1)可知,AD=AO,又AB=AB,∠AOB=90°,
∴Rt△ADB≌Rt△AOB(HL).
②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,
又在矩形AOBC中,OA∥BC,
∴∠CBA=∠OAB,
∴∠BAD=∠CBA,
∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,
在Rt△AHC中,∵AH2=HC2+AC2,
∴m2=32+(5-m)2,
∴m=,
∴BH=,
∴H(,3).
(3)如图③中,当点D在线段BK上时,△DEK面积最小,最小值=•DE•DK=×3×(5-)=,
当点D在BA延长线上时,△D′E′K面积最大,最大面积=×D′E′×KD′=×3×(5+)=.
综上所述,≤S≤.
【点睛】
本题考察四边形综合题、矩形性质、勾股定理、全等三角形判定和性质、旋转变换等知识,解题关键是理解题意,灵活运用所学知识处理问题,学会运用参数构建方程处理问题.
5.如图,四边形ABCD中,∠BCD=∠D=90°,E是边AB中点.已知AD=1,AB=2.
(1)设BC=x,CD=y,求y有关x函数关系式,并写出定义域;
(2)当∠B=70°时,求∠AEC度数;
(3)当△ACE为直角三角形时,求边BC长.
【答案】(1);(2)∠AEC=105°;(3)边BC长为2或.
【解析】
试题分析:(1)过A作AH⊥BC于H,得到四边形ADCH为矩形.在△BAH中,由勾股定理即可得出结论.
(2)取CD中点T,连接TE,则TE是梯形中位线,得ET∥AD,ET⊥CD,∠AET=∠B=70°.
又AD=AE=1,得到∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,即可得到结论.
(3)分两种状况讨论:①当∠AEC=90°时,易知△CBE≌△CAE≌△CAD,得∠BCE=30°,
解△ABH即可得到结论.
②当∠CAE=90°时,易知△CDA∽△BCA,由相似三角形对应边成比例即可得到结论.
试题解析:解:(1)过A作AH⊥BC于H.由∠D=∠BCD=90°,得四边形ADCH为矩形.
在△BAH中,AB=2,∠BHA=90°,AH=y,HB=,∴,
则
(2)取CD中点T,联结TE,则TE是梯形中位线,得ET∥AD,ET⊥CD,∴∠AET=∠B=70°.
又AD=AE=1,∴∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,∴∠AEC=70°+35°=105°.
(3)分两种状况讨论:①当∠AEC=90°时,易知△CBE≌△CAE≌△CAD,得∠BCE=30°,
则在△ABH中,∠B=60°,∠AHB=90°,AB=2,得BH=1,于是BC=2.
②当∠CAE=90°时,易知△CDA∽△BCA,又,
则(舍负)
易知∠ACE<90°,因此边BC长为.
综上所述:边BC长为2或.
点睛:本题是四边形综合题.考察了梯形中位线,相似三角形判定与性质.解题关键是掌握梯形中常见辅助线作法.
6.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒速度向点A匀速运动,同步点E从点A出发沿AB方向以2cm/秒速度向点B匀速运动,当其中一种点抵达终点时,另一种点也随之停止运动.设点D、E运动时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD可以成为菱形吗?假如能,求出对应t值,假如不能,阐明理由;
(3)当t为何值时,△DEF为直角三角形?请阐明理由.
【答案】(1)见解析;(2)能,t=10;(3)t=或12.
【解析】
【分析】
(1)运用t表达出CD以及AE长,然后在直角△CDF中,运用直角三角形性质求得DF长,即可证明;
(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t值;
(3)△DEF为直角三角形,分∠EDF=90°和∠DEF=90°两种状况讨论.
【详解】
解:(1)证明:∵在Rt△ABC中,∠C=90°﹣∠A=30°,
∴AB=AC=×60=30cm,
∵CD=4t,AE=2t,
又∵在Rt△CDF中,∠C=30°,
∴DF=CD=2t,∴DF=AE;
(2)能,
∵DF∥AB,DF=AE,
∴四边形AEFD是平行四边形,
当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,
∴当t=10时,AEFD是菱形;
(3)若△DEF为直角三角形,有两种状况:
①如图1,∠EDF=90°,DE∥BC,
则AD=2AE,即60﹣4t=2×2t,解得:t=,
②如图2,∠DEF=90°,DE⊥AC,
则AE=2AD,即,解得:t=12,
综上所述,当t=或12时,△DEF为直角三角形.
7.已知Rt△ABD中,边AB=OB=1,∠ABO=90°
问题探究:
(1)以AB为边,在Rt△ABO右边作正方形ABC,如图(1),则点O与点D距离为 .
(2)以AB为边,在Rt△ABO右边作等边三角形ABC,如图(2),求点O与点C距离.
问题处理:
(3)若线段DE=1,线段DE两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F距离有无最大值,假如有,求出最大值,假如没有,阐明理由.
【答案】(1)、;(2)、;(3)、.
【解析】
【分析】
试题分析:(1)、如图1中,连接OD,在Rt△ODC中,根据OD=计算即可.(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=计算即可.(3)、如图3中,当OF⊥DE时,OF值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可处理问题.
【详解】
试题解析:(1)、如图1中,连接OD,
∵四边形ABCD是正方形, ∴AB=BC=CD=AD=1,∠C=90° 在Rt△ODC中,∵∠C=90°,OC=2,CD=1,
∴OD=
(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.
∵∠FBE=∠E=∠CFB=90°, ∴四边形BECF是矩形, ∴BF=CF=,CF=BE=,
在Rt△OCE中,OC==.
(3)、如图3中,当OF⊥DE时,OF值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.
∵FD=FE=DE=1,OF⊥DE, ∴DH=HE,OD=OE,∠DOH=∠DOE=22.5°, ∵OM=DM,
∴∠MOD=∠MDO=22.5°, ∴∠DMH=∠MDH=45°, ∴DH=HM=, ∴DM=OM=,
∵FH=, ∴OF=OM+MH+FH==.
∴OF最大值为.
考点:四边形综合题.
8.菱形ABCD中、∠BAD=120°,点O为射线CA 上动点,作射线OM与直线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与直线CD相交于点F.
(1)如图①,点O与点A重叠时,点E,F分别在线段BC,CD上,请直接写出CE,CF,CA三条段段之间数量关系;
(2)如图②,点O在CA延长线上,且OA=AC,E,F分别在线段BC延长线和线段CD延长线上,请写出CE,CF,CA三条线段之间数量关系,并阐明理由;
(3)点O在线段AC上,若AB=6,BO=2,当CF=1时,请直接写出BE长.
【答案】(1)CA=CE+CF.(2)CF-CE=AC.(3)BE值为3或5或1.
【解析】
【分析】
(1)如图①中,结论:CA=CE+CF.只要证明△ADF≌△ACE(SAS)即可处理问题;
(2)结论:CF-CE=AC.如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.只要证明△FOG≌△EOC(ASA)即可处理问题;
(3)分四种情形画出图形分别求解即可处理问题.
【详解】
(1)如图①中,结论:CA=CE+CF.
理由:∵四边形ABCD是菱形,∠BAD=120°
∴AB=AD=DC=BC,∠BAC=∠DAC=60°
∴△ABC,△ACD都是等边三角形,
∵∠DAC=∠EAF=60°,
∴∠DAF=∠CAE,
∵CA=AD,∠D=∠ACE=60°,
∴△ADF≌△ACE(SAS),
∴DF=CE,
∴CE+CF=CF+DF=CD=AC,
∴CA=CE+CF.
(2)结论:CF-CE=AC.
理由:如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.
∵∠GOC=∠FOE=60°,
∴∠FOG=∠EOC,
∵OG=OC,∠OGF=∠ACE=120°,
∴△FOG≌△EOC(ASA),
∴CE=FG,
∵OC=OG,CA=CD,
∴OA=DG,
∴CF-EC=CF-FG=CG=CD+DG=AC+AC=AC,
(3)作BH⊥AC于H.∵AB=6,AH=CH=3,
∴BH=3,
如图③-1中,当点O在线段AH上,点F在线段CD上,点E在线段BC上时.
∵OB=2,
∴OH==1,
∴OC=3+1=4,
由(1)可知:CO=CE+CF,
∵OC=4,CF=1,
∴CE=3,
∴BE=6-3=3.
如图③-2中,当点O在线段AH上,点F在线段DC延长线上,点E在线段BC上时.
由(2)可知:CE-CF=OC,
∴CE=4+1=5,
∴BE=1.
如图③-3中,当点O在线段CH上,点F在线段CD上,点E在线段BC上时.
同法可证:OC=CE+CF,
∵OC=CH-OH=3-1=2,CF=1,
∴CE=1,
∴BE=6-1=5.
如图③-4中,当点O在线段CH上,点F在线段DC延长线上,点E在线段BC上时.
同法可知:CE-CF=OC,
∴CE=2+1=3,
∴BE=3,
综上所述,满足条件BE值为3或5或1.
【点睛】
本题属于四边形综合题,考察了全等三角形判定和性质,等边三角形性质,解题关键是学会添加常用辅助线,构造全等三角形处理问题,学会用分类讨论思想思考问题,属于中考压轴题.
9.(1)如图1,将矩形折叠,使落在对角线上,折痕为,点落在点处,若,则度数为______.
(2)小明手中有一张矩形纸片,,.
(画一画)如图2,点在这张矩形纸片边上,将纸片折叠,使落在所在直线上,折痕设为(点,分别在边,上),运用直尺和圆规画出折痕(不写作法,保留作图痕迹,并用黑色水笔把线段描清晰);
(算一算)如图3,点在这张矩形纸片边上,将纸片折叠,使落在射线上,折痕为,点分别落在点,处,若,求长.
【答案】(1)21;(2)画一画;见解析;算一算:
【解析】
【分析】
(1)运用平行线性质以及翻折不变性即可处理问题;
(2)【画一画】,如图2中,延长BA交CE延长线由G,作∠BGC角平分线交AD于M,交BC于N,直线MN即为所求;
【算一算】首先求出GD=9-,由矩形性质得出AD∥BC,BC=AD=9,由平行线性质得出∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,证出∠DFG=∠DGF,由等腰三角形判定定理证出DF=DG=,再由勾股定理求出CF,可得BF,再运用翻折不变性,可知FB′=FB,由此即可处理问题.
【详解】
(1)如图1所示:
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠ADB=∠DBC=42°,
由翻折性质可知,∠DBE=∠EBC=∠DBC=21°,
故答案为21.
(2)【画一画】如图所示:
【算一算】
如3所示:
∵AG=,AD=9,
∴GD=9-,
∵四边形ABCD是矩形,
∴AD∥BC,BC=AD=9,
∴∠DGF=∠BFG,
由翻折不变性可知,∠BFG=∠DFG,
∴∠DFG=∠DGF,
∴DF=DG=,
∵CD=AB=4,∠C=90°,
∴在Rt△CDF中,由勾股定理得:CF=,
∴BF=BC-CF=9,
由翻折不变性可知,FB=FB′=,
∴B′D=DF-FB′=.
【点睛】
四边形综合题,考察了矩形性质、翻折变换性质、勾股定理、等腰三角形判定、平行线性质等知识,解题关键是灵活运用所学知识处理问题,学会运用翻折不变性处理问题.
10.定义:我们把三角形被一边中线提成两个三角形叫做“友好三角形”.
性质:假如两个三角形是“友好三角形”,那么这两个三角形面积相等.
理解:如图①,在△ABC中,CD是AB边上中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.
应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.
(1)求证:△AOB和△AOE是“友好三角形”;
(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF面积.
探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重叠部分面积等于△ABC面积,请直接写出△ABC面积.
【答案】(1)见解析;(2)12;探究:2或2.
【解析】
试题分析:(1)运用一组对边平行且相等四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;
(2)△AOE和△DOE是“友好三角形”,即可得到E是AD中点,则可以求得△ABE、△ABF面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.
探究:画出符合条件两种状况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC面积.即可求出△ABC面积.
试题解析:(1)∵四边形ABCD是矩形,
∴AD∥BC,
∵AE=BF,
∴四边形ABFE是平行四边形,
∴OE=OB,
∴△AOE和△AOB是友好三角形.
(2)∵△AOE和△DOE是友好三角形,
∴S△AOE=S△DOE,AE=ED=AD=3,
∵△AOB与△AOE是友好三角形,
∴S△AOB=S△AOE,
∵△AOE≌△FOB,
∴S△AOE=S△FOB,
∴S△AOD=S△ABF,
∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.
探究:
解:分为两种状况:①如图1,
∵S△ACD=S△BCD.
∴AD=BD=AB,
∵沿CD折叠A和A′重叠,
∴AD=A′D=AB=×4=2,
∵△A′CD与△ABC重叠部分面积等于△ABC面积,
∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,
∴DO=OB,A′O=CO,
∴四边形A′DCB是平行四边形,
∴BC=A′D=2,
过B作BM⊥AC于M,
∵AB=4,∠BAC=30°,
∴BM=AB=2=BC,
即C和M重叠,
∴∠ACB=90°,
由勾股定理得:AC=,
∴△ABC面积是×BC×AC=×2×2=2;
②如图2,
∵S△ACD=S△BCD.
∴AD=BD=AB,
∵沿CD折叠A和A′重叠,
∴AD=A′D=AB=×4=2,
∵△A′CD与△ABC重叠部分面积等于△ABC面积,
∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,
∴DO=OA′,BO=CO,
∴四边形A′BDC是平行四边形,
∴A′C=BD=2,
过C作CQ⊥A′D于Q,
∵A′C=2,∠DA′C=∠BAC=30°,
∴CQ=A′C=1,
∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;
即△ABC面积是2或2.
考点:四边形综合题.
11.猜想与证明:
如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF中点,连接DM、ME,试猜想DM与ME关系,并证明你结论.
拓展与延伸:
(1)若将”猜想与证明“中纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME关系为 .
(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF中点,试证明(1)中结论仍然成立.
【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.
【解析】
试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而阐明DM=ME.
试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=DE,
∴DM=HM=ME,
∴DM=ME.
(1)、如图1,延长EM交AD于点H,
∵四边形ABCD和CEFG是矩形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=EM
∴DM=HM=ME,
∴DM=ME,
(2)、如图2,连接AE,
∵四边形ABCD和ECGF是正方形,
∴∠FCE=45°,∠FCA=45°,
∴AE和EC在同一条直线上,
在RT△ADF中,AM=MF,
∴DM=AM=MF,
在RT△AEF中,AM=MF,
∴AM=MF=ME,
∴DM=ME.
考点:(1)、三角形全等性质;(2)、矩形性质.
12.(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C一点,以AM为边作等边三角形AMN,连接CN,NC与AB位置关系为 ;
(2)深入探究:
如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN数量关系,并阐明理由;
(3)拓展延伸:
如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C一点,以AM为边作正方形AMEF,点N为正方形AMEF中点,连接CN,若BC=10,CN=,试求EF长.
【答案】(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3);
【解析】
分析:(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
(2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形性质得到,运用等腰三角形性质得到∠BAC=∠MAN,根据相似三角形性质即可得到结论;
(3)如图3,连接AB,AN,根据正方形性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案.
详解:(1)NC∥AB,理由如下:
∵△ABC与△MN是等边三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
在△ABM与△ACN中,
,
∴△ABM≌△ACN(SAS),
∴∠B=∠ACN=60°,
∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
∴CN∥AB;
(2)∠ABC=∠ACN,理由如下:
∵=1且∠ABC=∠AMN,
∴△ABC~△AMN
∴,
∵AB=BC,
∴∠BAC=(180°﹣∠ABC),
∵AM=MN
∴∠MAN=(180°﹣∠AMN),
∵∠ABC=∠AMN,
∴∠BAC=∠MAN,
∴∠BAM=∠CAN,
∴△ABM~△ACN,
∴∠ABC=∠ACN;
(3)如图3,连接AB,AN,
∵四边形ADBC,AMEF为正方形,
∴∠ABC=∠BAC=45°,∠MAN=45°,
∴∠BAC﹣∠MAC=∠MAN﹣∠MAC
即∠BAM=∠CAN,
∵,
∴,
∴△ABM~△ACN
∴,
∴=cos45°=,
∴,
∴BM=2,
∴CM=BC﹣BM=8,
在Rt△AMC,
AM=,
∴EF=AM=2.
点睛:本题是四边形综合题目,考察了正方形性质、等边三角形性质、等腰三角形性质、全等三角形性质定理和判定定理、相似三角形性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是处理问题关键.
13.如图1,若分别以△ABCAC、BC两边为边向外侧作四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.
(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF面积相等.
(2)引申:假如∠C90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请阐明理由;
(3)运用:如图3,分别以△ABC三边为边向外侧作四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分面积和有最大值是________.
【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.
【解析】
试题分析:(1)由于AC=DC,∠ACB=∠DCF=90°,BC=FC,因此△ABC≌△DFC,从而△ABC与△DFC面积相等;
(2)延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.得到四边形ACDE,BCFG均为正方形,AC=CD,BC=CF,∠ACP=∠DCQ.因此△APC≌△DQC.
于是AP=DQ.又由于S△ABC=BC•AP,S△DFC=FC•DQ,因此S△ABC=S△DFC;
(3)根据(2)得图中阴影部分面积和是△ABC面积三倍,若图中阴影部分面积和有最大值,则三角形ABC面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分面积和最大.因此S阴影部分面积和=3S△ABC=3××3×4=18.
(1)证明:在△ABC与△DFC中,
∵,
∴△ABC≌△DFC.
∴△ABC与△DFC面积相等;
(2)解:成立.理由如下:
如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.
∴∠APC=∠DQC=90°.
∵四边形ACDE,BCFG均为正方形,
∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,
∴∠ACP=∠DCQ.
∴,
△APC≌△DQC(AAS),
∴AP=DQ.
又∵S△ABC=BC•AP,S△DFC=FC•DQ,
∴S△ABC=S△DFC;
(3)解:根据(2)得图中阴影部分面积和是△ABC面积三倍,
若图中阴影部分面积和有最大值,则三角形ABC面积最大,
∴当△ABC是直角三角形,即∠C是90度时,阴影部分面积和最大.
∴S阴影部分面积和=3S△ABC=3××3×4=18.
考点:四边形综合题
14.如图,在平面直角坐标系xOy中,四边形OABC顶点A在x轴正半轴上,OA=4,OC=2,点D、E、F、G分别为边OA、AB、BC、CO中点,连结DE、EF、FG、GD.
(1)若点C在y轴正半轴上,当点B坐标为(2,4)时,判断四边形DEFG形状,并阐明理由.
(2)若点C在第二象限运动,且四边形DEFG为菱形时,求点四边形OABC对角线OB长度取值范围.
(3)若在点C运动过程中,四边形DEFG一直为正方形,当点C从X轴负半轴通过Y轴正半轴,运动至X轴正半轴时,直接写出点B运动途径长.
【答案】(1)正方形(2)(3)2π
【解析】
分析:(1)连接OB,AC,阐明OB⊥AC,OB=AC,可得四边形DEFG是正方形.
(2)由四边形DEFG是菱形,可得OB=AC,当点C在y轴上时,AC=,当点C在x轴上时,AC=6, 故可得结论;
(3)根据题意计算弧长即可.
详解:(1)正方形,如图1,证明连接OB,AC,阐明OB⊥AC,OB=AC,可得四边形DEFG是正方形.
(2)
如图2,由四边形DEFG是菱形,可得OB=AC,当点C在y轴上时,AC=,当点C在x轴上时,AC=6, ∴ ;
(3)2π.
如图3,当四边形DEFG是正方形时,OB⊥AC,且OB=AC,构造△OBE≌△ACO,可得B点在以E(0,4)为圆心,2为半径圆上运动.
因此当C点从x轴负半轴到正半轴运动时,B点运动途径为2 .
图1 图2 图3
点睛:本题重要考察了正方形判定,菱形性质以及弧长计算.灵活运用正方形判定定理和菱形性质运用是解题关键.
15.如图①,在△ABC中,AB=7,tanA=,∠B=45°.点P从点A出发,沿AB方向以每秒1个单位长度速度向终点B运动(不与点A、B重叠),过点P作PQ⊥AB.交折线AC-CB于点Q,以PQ为边向右作正方形PQMN,设点P运动时间为t(秒),正方形PQMN与△ABC重叠部分图形面积为S(平方单位).
(1)直接写出正方形PQMN边PQ长(用含t代数式表达).
(2)当点M落在边BC上时,求t值.
(3)求S与t之间函数关系式.
(4)如图②,点P运动同步,点H从点B出发,沿B-A-B方向做一次来回运动,在B-A上速度为每秒2个单位长度,在A-B上速度为每秒4个单位长度,当点H停止运动时,点P也随之停止,连结MH.设MH将正方形PQMN提成两部分图形面积分别为S1、S2(平方单位)(0<S1<S2),直接写出当S2≥3S1时t取值范围.
【答案】(1) PQ=7-t.(2) t=.(3) 当0<t≤时,S=.当<t≤4,.当4<t<7时,.(4)或或.
【解析】
试题分析:(1)分两种状况讨论:当点Q在线段AC上时,当点Q在线段BC上时.
(2)根据AP+PN+NB=AB,列出有关t方程即可解答;
(3)当0<t≤时,当<t≤4,当4<t<7时;
(4)或或.
试题解析:(1)当点Q在线段AC上时,PQ=tanAAP=t.
当点Q在线段BC上时,PQ=7-t.
(2)当点M落在边BC上时,如图③,
由题意得:t+t+t=7,
解得:t=.
∴当点M落在边BC上时,求t值为.
(3)当0<t≤时,如图④,
S=.
当<t≤4,如图⑤,
.
当4<t<7时,如图⑥,
.
(4)或或..
考点:四边形综合题.
展开阅读全文