资源描述
2025年四川省康定市高一数学第一学期期末经典试题
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1.在上,满足的的取值范围是
A. B.
C. D.
2.天文学中为了衡量天体的明暗程度,古希腊天文学家喜帕恰斯(,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,天体就越亮;星等的数值越大,天体就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森()又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述,两颗星的星等与亮度满足(),其中星等为的星的亮度为(,2).已知“心宿二”的星等是1.00,“天津四”的星等是1.25,“心宿二”的亮度是“天津四”的倍,则的近似值为(当较小时,)()
A1.23 B.1.26
C.1.51 D.1.57
3.函数在区间单调递减,在区间上有零点,则的取值范围是
A. B.
C. D.
4.下列六个关系式:⑴其中正确的个数为()
A.6个 B.5个
C.4个 D.少于4个
5.将的图象向右平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到的图象,则
A. B.
C. D.
6.已知是自然对数的底数,函数的零点为,函数的零点为,则下列不等式中成立的是
A. B.
C. D.
7.已知,则的值为( )
A B.1
C. D.
8.如图,①②③④中不属于函数,,的一个是()
A.① B.②
C.③ D.④
9.若函数f(x)满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”,则f(x)解析式可以是( )
A.f(x)=(x-1)2 B.f(x)=ex
C.f(x)= D.f(x)=ln(x+1)
10.已知,,,则的大小关系为
A. B.
C. D.
二、填空题:本大题共6小题,每小题5分,共30分。
11.已知幂函数(是常数)的图象经过点,那么________
12.已知函数是奇函数,当时,,若,则m的值为______.
13.已知sinα+cosα=,α∈(-π,0),则tanα=________.
14.由于德国著名数学家狄利克雷对数论、数学分析和物理学的突出贡献,人们将函数
命名狄利克雷函数,已知函数,下列说法中:
①函数的定义域和值域都是;②函数是奇函数;③函数是周期函数;④函数在区间上是单调函数.
正确结论是__________
15.已知为的外心,,,,且;当时,______;当时,_______.
16.已知圆:,为圆上一点,、、,则的最大值为______.
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17.女排世界杯比赛采用局胜制,前局比赛采用分制,每个队只有赢得至少分,并同时超过对方分时,才胜局;在决胜局(第五局)采用分制,每个队只有赢得至少分,并领先对方分为胜.在每局比赛中,发球方赢得此球后可得分,并获得下一球的发球权,否则交换发球权,并且对方得分.现有甲乙两队进行排球比赛.
(1)若前三局比赛中甲已经赢两局,乙赢一局.接下来的每局比赛甲队获胜的概率为,求甲队最后赢得整场比赛的概率;
(2)若前四局比赛中甲、乙两队已经各赢两局比赛.在决胜局(第五局)中,两队当前的得分为甲、乙各分,且甲已获得下一发球权.若甲发球时甲赢分的概率为,乙发球时甲赢分的概率为,得分者获得下一个球的发球权.求甲队在个球以内(含个球)赢得整场比赛的概率.
18.已知函数
(1)求当f(x)取得最大值时,x的取值集合;
(2)完成下列表格并在给定的坐标系中,画出函数f(x)在上的图象.
x
y
19.已知函数为奇函数.
(1)求的值;
(2)判断并证明在的单调性.
20.已知函数是定义在R上的偶函数,当时,
(1)画出函数的图象;
(2)根据图象写出的单调区间,并写出函数的值域.
21.(1)已知,求的值.
(2)已知,是第四象限角,,,求.
参考答案
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1、C
【解析】直接利用正弦函数的性质求解即可
【详解】上,满足的的取值范围:.
故选C
【点睛】本题考查正弦函数的图象与性质,考查计算能力,是基础题
2、B
【解析】根据题意列出方程,结合对数式与指数式的互化以及对数运算性质即可求解.
【详解】设“心宿二”的星等为,“天津四”的星等为,
“心宿二”和“天津四”的亮度分别为,,
,,,
所以,
所以,
所以,
所以与最接近的是1.26,
故选:B.
3、C
【解析】分析:结合余弦函数的单调减区间,求出零点,再结合零点范围列出不等式
详解:当,,
又∵,则,即,,
由得,,
∴,解得,
综上.
故选C.
点睛:余弦函数的单调减区间:,增区间:,零点:,对称轴:,对称中心:,.
4、C
【解析】根据集合自身是自身的子集,可知①正确;根据集合无序性可知②正确;根据元素与集合只有属于与不属于关系可知③⑤不正确;根据元素与集合之间的关系可知④正确;根据空集是任何集合的子集可知⑥正确,即正确的关系式个数为个,
故选C.
点睛:本题主要考查了:(1)点睛:集合的三要素是:确定性、互异性和无序性,;
(2)元素和集合之间是属于关系,子集和集合之间是包含关系;
(3)不含任何元素的集合称为空集,空集是任何集合的子集
5、A
【解析】由三角函数图象的平移变换及伸缩变换可得:将的图象所有点的横坐标缩短到原来的倍,再把所得图象向左平移个单位,即可得到的图象,得解
【详解】解:将的图象所有点的横坐标缩短到原来的倍得到,
再把所得图象向左平移个单位,得到,
故选A
【点睛】本题主要考查了三角函数图象的平移变换及伸缩变换,属于简单题
6、A
【解析】解:由f(x)=ex+x﹣2=0得ex=2﹣x,
由g(x)=lnx+x﹣2=0得lnx=2﹣x,
作出函数y=ex,y=lnx,y=2﹣x的图象如图:
∵函数f(x)=ex+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,
∴y=ex与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,
由图象知a<1<b,
故选A
考点:函数的零点
7、A
【解析】知切求弦,利用商的关系,即可得解.
【详解】,
故选:A
8、B
【解析】根据对数函数图象特征及与图象的关于轴对称即可求解.
【详解】解:由对数函数图象特征及与的图象关于轴对称,
可确定②不已知函数图象.
故选:B.
9、C
【解析】根据条件知,f(x)在(0,+∞)上单调递减
对于A,f(x)=(x-1)2在(1,+∞)上单调递增,排除A;
对于B,f(x)=ex在(0,+∞)上单调递增,排除B;
对于C,f(x)=在(0,+∞)上单调递减,C正确;
对于D,f(x)=ln(x+1)在(0,+∞)上单调递增,排除D.
10、A
【解析】利用利用等中间值区分各个数值的大小
【详解】;
;
故
故选A
【点睛】利用指数函数、对数函数的单调性时要根据底数与的大小区别对待
二、填空题:本大题共6小题,每小题5分,共30分。
11、
【解析】首先代入函数解析式求出,即可得到函数解析式,再代入求出函数值即可;
【详解】解:因为幂函数(是常数)的图象经过点,所以,所以,所以,所以;
故答案:
12、
【解析】由奇函数可得,则可得,解出即可
【详解】因为是奇函数,,所以,即,解得
故答案为:
【点睛】本题考查利用奇偶性求值,考查已知函数值求参数
13、.
【解析】由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得和的值,可得的值.
【详解】因为sinα+cosα=,①所以sin2α+cos2α+2sinαcosα=,
即2sinαcosα=.因为α∈(-π,0),所以sinα<0,cosα>0,
所以sinα-cosα=,
与sinα+cosα=联立解得sinα=-,cosα=,
所以tanα=.
故答案为:.
【点睛】该题考查的是有关三角函数恒等变换化简求值问题,涉及到的知识点有同角三角函数关系式,在解题的过程中,注意这三个式子是知一求二,属于简单题目.
14、①
【解析】由题意知,所以①正确;根据奇函数的定义,x是无理数时,显然不成立,故②错误;当x是有理数时,显然不符合周期函数的定义故③错误;函数在区间上是既不是增函数也不是减函数,故④错误;综上填①.
15、 (1). (2).
【解析】(1)由可得出为的中点,可知为外接圆的直径,利用锐角三角函数的定义可求出;(2)推导出外心的数量积性质,,由题意得出关于、和的方程组,求出的值,再利用向量夹角的余弦公式可求出的值.
【详解】当时,由可得,,
所以,为外接圆的直径,则,此时;
如下图所示:
取的中点,连接,则,所,
,同理可得.
所以,,整理得,
解得,,,因此,.
故答案为:;.
【点睛】本题考查三角的外心的向量数量积性质的应用,解题的关键就是推导出,,并以此建立方程组求解,计算量大,属于难题.
16、53
【解析】
设,则,从而求出,再根据的取值范围,求出式子的最大值.
【详解】设,
因为为圆上一点,则,且,
则
(当且仅当时取得最大值),
故答案为:53.
【点睛】本题属于圆与距离的应用问题,主要考查代数式的最值求法.解决此类问题一是要将题设条件转化为相应代数式;二是要确定代数式中变量的取值范围.
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17、 (1);(2)
【解析】(1)先确定甲队最后赢得整场比赛的情况,再分别根据独立事件概率乘法公式求解,最后根据互斥事件概率加法公式得结果;
(2)先根据比赛规则确定x的取值,再确定甲赢得整场比赛的情况,最后根据独立事件概率乘法公式以及互斥事件概率加法公式得结果.
【详解】(1)甲队最后赢得整场比赛的情况为第四局赢或第四局输第五局赢,
所以甲队最后赢得整场比赛的概率为,
(2)设甲队x个球后赢得比赛,
根据比赛规则,x的取值只能为2或4,对应比分为
两队打了2个球后甲赢得整场比赛,即打第一个球甲发球甲得分,
打第二个球甲发球甲得分,此时概率为;
两队打了4个球后甲赢得整场比赛,即打第一个球甲发球甲得分,
打第二个球甲发球甲失分,打第三个球乙发球甲得分,打第四个球甲发球甲得分,
或打第一个球甲发球甲失分,打第二个球乙发球甲得分,打第三个球甲发球甲得分,
打第四个球甲发球甲得分,此时概率为.
故所求概率为:
18、(1);
(2)图象见解析.
【解析】(1)利用整体法求解三角函数最大值时x的取值集合;(2)填写表格,并作图.
【小问1详解】
由,得
故当f(x)取得最大值时,x的取值集合为
【小问2详解】
函数f(x)在上的图象如下:
x
0
y
0
2
19、(1)
(2)在上单调递增,在上单调递减,证明过程见解析.(1)
【解析】(1)根据奇函数的性质和定义进行求解即可;
(2)根据函数的单调性的定义进行判断证明即可.
【小问1详解】
因为是奇函数,所以,
因为,所以是奇函数,因此;
【小问2详解】
在上单调递增,在上单调递减,证明如下:
设是上的任意两个实数,且,
,
当时,
,
所以在上单调递增,
当时,
,
所以在上单调递减.
20、 (1)见解析;(2)单调区间为:上是增函数,上是减函数,值域
【解析】(1)由偶函数的图象关于y轴对称可知,要画出函数的图象,只须作出当时的图象,然后关于y轴对称即可;(2)观察图象,结合函数单调性和值域的定义,写出的单调区间及值域.
【详解】(1)函数的图象如图所示
(2)由图象得,的单调区间为:上是增函数,
上是减函数,
值域为.
【点睛】本题考查了偶函数的性质:图象关于y轴对称和数形结合思想,函数的图象可直观反映其性质,利用函数的图象可以解答函数的值域(最值),单调性,奇偶性等问题,也可用来解答不等式的有关题目.
21、(1)(2)
【解析】(1)由正余弦的齐次式化为正切即可求值;
(2)由同角的三角函数基本关系及两角和的正弦公式求解.
【详解】(1)
.
(2),是第四象限角,
,
,,
,
展开阅读全文