收藏 分销(赏)

2025-2026学年河北省衡水高一数学第一学期期末统考模拟试题含解析.doc

上传人:y****6 文档编号:12794207 上传时间:2025-12-08 格式:DOC 页数:15 大小:689KB 下载积分:12.58 金币
下载 相关 举报
2025-2026学年河北省衡水高一数学第一学期期末统考模拟试题含解析.doc_第1页
第1页 / 共15页
2025-2026学年河北省衡水高一数学第一学期期末统考模拟试题含解析.doc_第2页
第2页 / 共15页


点击查看更多>>
资源描述
2025-2026学年河北省衡水高一数学第一学期期末统考模拟试题 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知函数,则( ) A.0 B.1 C.2 D.10 2.已知函数,若正数,,满足,则() A. B. C. D. 3.已知幂函数的图象过点(2,),则的值为(  ) A. B. C. D. 4.已知的定义域为,则函数的定义域为 A. B. C. D. 5.函数的零点所在区间为() A. B. C. D. 6.已知函数的值域是() A. B. C. D. 7.的值是 A. B. C. D. 8.若,求() A. B. C. D. 9.已知是定义在上的奇函数且单调递增,,则的取值范围是( ) A. B. C. D. 10.已知奇函数的定义域为,其图象是一条连续不断的曲线.若,则函数在区间内的零点个数至少为() A.1 B.2 C.3 D.4 二、填空题:本大题共6小题,每小题5分,共30分。 11.函数的部分图象如图所示.若,且,则_____________ 12.若直线经过点,且与斜率为的直线垂直,则直线的方程为__________ 13.点关于直线的对称点的坐标为______. 14.函数的最小值为________ 15.若“”是“”的必要条件,则的取值范围是________ 16.已知函数,若、、、、满足,则的取值范围为______. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.如图所示四棱锥中,底面,四边形中,,,, 求四棱锥的体积; 求证:平面; 在棱上是否存在点异于点,使得平面,若存在,求的值;若不存在,说明理由 18.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点为圆心的两个同心圆弧和延长后通过点,的两条线段围成.设圆弧和圆弧所在圆的半径分别为米,圆心角为θ(弧度) (1)若,,求花坛的面积; (2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD的长度为多少时,花坛的面积最大? 19.已知函数是定义在上的奇函数 (1)求实数的值; (2)判断函数的单调性,并利用定义证明 20.已知函数为奇函数 (1)求实数k值; (2)设,证明:函数在上是减函数; (3)若函数,且在上只有一个零点,求实数m的取值范围 21.已知函数. (1)当时,试判断并证明其单调性. (2)若存在,使得成立,求实数的取值范围. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】根据分段函数的解析式直接计算即可. 【详解】. 故选:B. 2、B 【解析】首先判断函数在上单调递增;然后根据,同时结合函数的单调性及放缩法即可证明选项B;通过举例说明可判断选项A,C,D. 【详解】因为,所以函数在上单调递增; 因为,,,均为正数,所以, 又,所以, 所以,所以, 又因为 ,所以,选项B正确; 当时,满足,但不满足,故选项A错误; 当时,满足,但此时,不满足,故选项C错误; 当时,满足,但此时,不满足,故选项D错误. 故选:B. 3、A 【解析】令幂函数且过 (2,),即有,进而可求的值 【详解】令,由图象过(2,) ∴,可得 故 ∴ 故选:A 【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题 4、B 【解析】因为函数的定义域为,故函数有意义只需即可,解得,选B 考点:1、函数的定义域的概念;2、复合函数求定义域 5、B 【解析】由零点存在定理判定可得答案. 【详解】因为在上单调递减, 且,, 所以的零点所在区间为 故选:B 6、B 【解析】由于,进而得,即函数的值域是 【详解】解:因为, 所以 所以函数的值域是 故选:B 7、B 【解析】利用诱导公式求解. 【详解】解:由诱导公式得, 故选:B. 8、A 【解析】根据,求得,再利用指数幂及对数的运算即可得出答案. 【详解】解:因为,所以, 所以. 故选:A. 9、A 【解析】根据函数的奇偶性,把不等式转化为,再结合函数的单调性,列出不等式组,即可求解. 【详解】由题意,函数是定义在上的奇函数,所以, 则不等式,可得, 又因为单调递增,所以,解得, 故选:. 【点睛】求解函数不等式的方法: 1、解函数不等式的依据是函数的单调性的定义, 具体步骤:①将函数不等式转化为的形式;②根据函数的单调性去掉对应法则“”转化为形如:“”或“”的常规不等式,从而得解. 2、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解. 10、C 【解析】根据奇函数的定义域为R可得,由和奇函数的性质可得、,利用零点的存在性定理即可得出结果. 【详解】奇函数的定义域为R,其图象为一条连续不断的曲线, 得,由得, 所以,故函数在之间至少存在一个零点, 由奇函数的性质可知函数在之间至少存在一个零点, 所以函数在之间至少存在3个零点. 故选:C 二、填空题:本大题共6小题,每小题5分,共30分。 11、## 【解析】根据函数的图象求出该函数的解析式,结合图象可知,点、关于直线对称,进而得出. 【详解】由图象可知, ,即, 则, 此时,, 由于, 所以,即. ,且, 由图象可知,, 则. 故答案为:. 12、 【解析】与斜率为的直线垂直,故得到直线斜率为又因为直线经过点,由点斜式故写出直线方程,化简为一般式: 故答案为. 13、 【解析】设点关于直线的对称点为,由垂直的斜率关系, 和线段的中点在直线上列出方程组即可求解. 【详解】设点关于直线的对称点为, 由对称性知,直线与线段垂直,所以, 所以,又线段的中点在直线上, 即,所以, 由, 所以点关于直线的对称点的坐标为:. 故答案为:. 14、## 【解析】用辅助角公式将函数整理成的形式,即可求出最小值 【详解】,,所以最小值为 故答案为: 15、 【解析】根据题意解得:,得出,由此可得出实数的取值范围. 【详解】根据题意解得:, 由于“”是“”必要条件,则,. 因此,实数的取值范围是:. 故答案为:. 16、 【解析】设,作出函数的图象,可得,利用对称性可得,由可求得,进而可得出,利用二次函数的基本性质可求得的取值范围. 【详解】作出函数的图象如下图所示: 设, 当时,, 由图象可知,当时,直线与函数的图象有五个交点, 且点、关于直线对称,可得,同理可得, 由,可求得, 所以, . 因此,的取值范围是. 故答案为:. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决; (3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)4;(2)见解析;(3)不存在. 【解析】利用四边形是直角梯形,求出,结合底面,利用棱锥的体积公式求解即可求;先证明,,结合,利用线面垂直的判定定理可得平面;用反证法证明,假设存在点异于点使得平面证明平面平面,与平面与平面相交相矛盾,从而可得结论 【详解】显然四边形ABCD是直角梯形, 又底面 平面ABCD,平面ABCD, 在直角梯形ABCD中,, ,,即 又, 平面; 不存在,下面用反证法进行证明 假设存在点异于点使得平面PAD ,且平面PAD, 平面PAD, 平面PAD 又, 平面平面PAD 而平面PBC与平面PAD相交,得出矛盾 【点睛】本题考查直线与平面垂直的判定,棱锥的体积,平面与平面平行的判定定理,考查空间想象能力,逻辑推理能力.证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面. 18、(1);(2)当线段的长为5米时,花坛的面积最大. 【解析】(1)根据扇形的面积公式,求出两个扇形面积之差就是所求花坛的面积即可; (2)利用弧长公式根据预算费用总计1200元可得到等式,再求出花坛的面积的表达式,结合得到的等式,通过配方法可以求出面积最大时, 线段AD的长度. 【详解】(1)设花坛面积为S平方米. 答:花坛的面积为; (2) 圆弧长为米,圆弧的长为米,线段的长为米 由题意知, 即 * , , 由*式知,, 记则 所以= 当时,取得最大值,即时,花坛的面积最大, 答:当线段的长为5米时,花坛的面积最大. 【点睛】本题考查了弧长公式和扇形面积公式,考查了数学阅读能力,考查了数学运算能力. 19、 (1);(2)为减函数;证明见解析 【解析】(1)根据奇函数的定义,即可求出; (2)利用定义证明单调性 【详解】解:(1), 由得, 解得 另解:由,令得代入得: 验证,当时,,满足题意 (2)为减函数 证明:由(1)知, 在上任取两不相等的实数,,且, , 由为上的增函数,,,,, 则, 函数为减函数 【点睛】定义法证明函数单调性的步骤: (1)取值;(2)作差;(3)定号;(4)下结论 20、(1)-1; (2)见解析; (3). 【解析】(1)由于为奇函数,可得,即可得出; (2)利用对数函数的单调性和不等式的性质通过作差即可得出; (3)利用(2)函数的单调性、指数函数的单调性,以及零点存在性定理即可得出m取值范围 【小问1详解】 为奇函数, , 即, ,整理得, 使无意义而舍去) 【小问2详解】 由(1),故, 设, (a)(b) 时,,,, (a)(b), 在上时减函数; 【小问3详解】 由(2)知,h(x)在上单调递减,根据复合函数的单调性可知在递增, 又∵y=在R上单调递增, 在递增, 在区间上只有一个零点, (4)(5)≤0,解得. 21、(1)单调递增,证明见解析; (2). 【解析】(1)利用单调性定义证明的单调性; (2)根据奇偶性定义判断奇偶性,结合(1)的区间单调性确定上的单调性,进而求的值域,令将问题转化为求参数范围. 【小问1详解】 在上单调递增,证明如下: ,且,则, 由得:,, 所以,即在上的单调递增 【小问2详解】 由题设,使, 又,即是偶函数, 结合(1)知:在单调递减,在上单调递增,又, 所以,即, 令,则使,可得, 令在单调递增,故; 所以,即.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服