资源描述
2025年甘肃省天水市甘谷县高一数学第一学期期末监测试题
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1.若方程表示圆,则实数的取值范围是
A. B.
C. D.
2.已知是边长为2的等边三角形,P为平面ABC内一点,则的最小值是
A. B.
C. D.
3.已知函数的图像如图所示,则
A. B.
C. D.
4.若函数y=|x|(x-1)的图象与直线y=2(x-t)有且只有2个公共点,则实数t的所有取值之和为( )
A.2 B.
C.1 D.
5.若点关于直线的对称点是,则直线在轴上的截距是
A.1 B.2
C.3 D.4
6.天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森()又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足.其中星等为的星的亮度为.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的倍,则与最接近的是(当较小时,)
A.1.24 B.1.25
C.1.26 D.1.27
7.为配制一种药液,进行了二次稀释,先在容积为40L的桶中盛满纯药液,第一次将桶中药液倒出用水补满,搅拌均匀,第二次倒出后用水补满,若第二次稀释后桶中药液含量不超过容积的60%,则V的最小值为( )
A.5 B.10
C.15 D.20
8.在正方体中,分别是的中点,则直线与平面所成角的余弦值为
A. B.
C. D.
9.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是()
A. B.
C. D.
10.已知函数与的图像关于对称,则()
A.3 B.
C.1 D.
二、填空题:本大题共6小题,每小题5分,共30分。
11.已知定义域为R的偶函数满足,当时,,则方程在区间上所有的解的和为___________.
12.记函数的值域为,在区间上随机取一个数,则的概率等于__________
13.若函数在区间上没有最值,则的取值范围是______.
14.已知函数,其所有的零点依次记为,则_________.
15.已知,且,则的最小值为__________.
16.在平面直角坐标系中,已知点A在单位圆上且位于第三象限,点A的纵坐标为,现将点A沿单位圆逆时针运动到点B,所经过的弧长为,则点B的坐标为___________.
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17.已知函数,
(1)求函数的最大值及取得最大值时的值;
(2)若方程在上的解为,,求的值
18.如图,甲、乙是边长为的两块正方形钢板,现要将甲裁剪焊接成一个正四棱柱,将乙裁剪焊接成一个正四棱锥,使它们的全面积都等于一个正方形的面积(不计焊接缝的面积)
(1)将你的裁剪方法用虚线标示在图中,并作简要说明;
(2)试比较你所制作的正四棱柱与正四棱锥体积的大小,并证明你的结论
19.已知函数.
(1)求在闭区间的最大值和最小值;
(2)设函数对任意,有,且当时,.求在区间上的解析式.
20.如图,在平面直角坐标系中,角,的始边均为轴正半轴,终边分别与圆交于,两点,若,,且点的坐标为
(1)若,求实数的值;
(2)若,求的值
21.已知向量,满足,,且,的夹角为.
(1)求;
(2)若,求的值.
参考答案
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1、A
【解析】由二元二次方程表示圆的充要条件可知:,解得,故选A
考点:圆的一般方程
2、B
【解析】要取得最小值,则与共线且反向
即位于的中线上,中线长为
设,则
则
当时,取最小值,
故选
第II卷(非选择题
3、B
【解析】本题首先可以通过图像得出函数的周期,然后通过函数周期得出的值,再然后通过函数过点求出的值,最后将带入函数解析式即可得出结果
【详解】因为由图像可知,解得,
所以,,
因为由图像可知函数过点,
所以,解得,
取,,,
所以,故选B
【点睛】本题考查了三角函数的相关性质,主要考查了三角函数图像的相关性质,考查了三角函数的周期性的求法,考查计算能力,考查数形结合思想,是中档题
4、C
【解析】可直接根据题意转化为方程有两个根,然后利用分类讨论思想去掉绝对值再利用判别式即可求得各个t的值
【详解】由题意得方程有两个不等实根,
当方程有两个非负根时,
令 时,则方程为,整理得
,解得;
当时,
,解得,故不满足满足题意;
当方程有一个正跟一个负根时,
当时,,
,解得,
当时,方程为,
,解得;
当方程有两个负根时,
令,则方程为,
解得,
当,
,解得,不满足题意
综上,t的取值为 和,
因此t的所有取值之和为1,故选C
【点睛】本题是在二次函数的基础上加了绝对值,所以首先需解决绝对值,关于去绝对值直接用分类讨论思想即可;
关于二次函数根的分布需结合对称轴,判别式,进而判断,必要时可结合进行判断
5、D
【解析】∵点A(1,1)关于直线y=kx+b的对称点是B(﹣3,3),
由中点坐标公式得AB的中点坐标为,
代入y=kx+b得 ①
直线AB得斜率为,则k=2.
代入①得, .
∴直线y=kx+b为 ,解得:y=4.
∴直线y=kx+b在y轴上的截距是4.
故选D.
6、C
【解析】根据题意,代值计算,即可得,再结合参考公式,即可估算出结果.
【详解】根据题意可得:
可得,解得,
根据参考公式可得,
故与最接近的是.
故选:C.
【点睛】本题考查对数运算,以及数据的估算,属基础题.
7、B
【解析】依据题意列出不等式即可解得V的最小值.
【详解】由,解得
则V的最小值为10.
故选:B
8、C
【解析】设正方体的棱长为,如图,连接,它们交于,连接,则平面,而,故就是直线与平面所成的余角,又为直角三角形且,所以,,设直线与平面所成的角为,则,选C.
点睛:线面角的计算往往需要先构造面的垂线,必要时还需将已知的面的垂线适当平移才能构造线面角,最后把该角放置在容易计算的三角形中计算其大小.
9、C
【解析】如图,取中点,
则平面,
故,因此与平面所成角即为,
设,则,,
即,
故,故选:C.
10、B
【解析】根据同底的指数函数和对数函数互为反函数可解.
【详解】由题知是的反函数,所以,所以.
故选:B.
二、填空题:本大题共6小题,每小题5分,共30分。
11、
【解析】根据给定条件,分析函数,函数的性质,再在同一坐标系内作出两个函数图象,结合图象计算作答.
【详解】当时,,则函数在上单调递减,函数值从减到0,
而是R上的偶函数,则函数在上单调递增,函数值从0增到,
因,有,则函数的周期是2,且有,即图象关于直线对称,
令,则函数在上递增,在上递减,值域为,且图象关于直线对称,
在同一坐标系内作出函数和的图象,如图,
观察图象得,函数和在上的图象有8个交点,且两两关于直线对称,
所以方程在区间上所有解的和为.
故答案为:
【点睛】方法点睛:函数零点个数判断方法:(1)直接法:直接求出f(x)=0的解;(2)图象法:作出函数f(x)的图象,观察与x轴
公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.
12、
【解析】因为;
所以的概率等于
点睛:
(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解
(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域
(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率
13、
【解析】根据正弦函数的图像与性质,可求得取最值时的自变量值,由在区间上没有最值可知,进而可知或,解不等式并取的值,即可确定的取值范围.
【详解】函数,
由正弦函数的图像与性质可知,当取得最值时满足,
解得,
由题意可知,在区间上没有最值,
则,,
所以或,
因为,解得或,
当时,代入可得或,
当时,代入可得或,
当时,代入可得或,此时无解.
综上可得或,即的取值范围为.
故答案为:.
【点睛】本题考查了正弦函数的图像与性质应用,由三角函数的最值情况求参数,注意解不等式时的特殊值取法,属于难题.
14、16
【解析】由零点定义,可得关于的方程.去绝对值分类讨论化简.将对数式化为指数式,再去绝对值可得四个方程.结合韦达定理,求得各自方程两根的乘积,即可得所有根的积.
【详解】函数的零点
即
所以
去绝对值可得或
即或
去绝对值可得或,或
当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得
当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得
当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得
当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得
综上可得所有零点的乘积为
故答案为:
【点睛】本题考查了函数零点定义,含绝对值方程的解法,分类讨论思想的应用,由韦达定理研究方程根的关系,属于难题.
15、
【解析】利用已知条件凑出,再根据“”的巧用,
最后利用基本不等式即可求解.
【详解】由,得,即.
因为所以,,则
=
,
当且仅当即时,等号成立.
所以当时,取得最小值为.
故答案为:.
16、
【解析】设点A是角终边与单位圆的交点,根据三角函数的定义及平方关系求出,,再利用诱导公式求出,即可得出答案.
【详解】解:设点A是角的终边与单位圆的交点,
因为点A在单位圆上且位于第三象限,点A的纵坐标为,
所以,,
因为点A沿单位圆逆时针运动到点B,所经过的弧长为,
所以,
所以点的横坐标为,
纵坐标为,
即点B的坐标为.
故答案为:.
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17、(1)当时,函数取得最大值为;(2).
【解析】(1)利用同角三角函数的平方关系化简,再利用换元法即可求最值以及取得最值时的值;
(2)求出函数的对称轴,得到和的关系,利用诱导公式化简可得答案.
【详解】(1),
令,
可得,对称轴为 ,开口向下,
所以在上单调递增,
所以当,
即,时,,
所以当时,函数取得最大值为;
(2)令,可得,
当时,是的对称轴,
因为方程在上的解为,,
,,
且,所以,所以,
所以
,
所以的值为.
18、 (1)见解析(2) 正四棱柱的体积比正四棱锥的体积大
【解析】该四棱柱的底面为正方体,侧棱垂直底面,可知其由两个一样的正方形和四个完全相同的长方形组成,对图形进行切割,画出图形即可,画法不唯一;
正四棱柱的底面边长为,高为,正四棱锥的底面边长为,高为,结合体积公式求得体积,然后比较大小即可;
解析:(1)将正方形甲按图中虚线剪开,以两个正方形为底面,四个长方形为侧面,焊接成一个底面边长为,高为的正四棱柱
将正方形乙按图中虚线剪开,以两个长方形焊接成边长为的正方形为底面,三个等腰三角形为侧面,两个直角三角形合拼成为一侧面,焊接成一个底面板长为,斜高为的正四棱锥
(2)∵正四棱柱的底面边长为,高为,∴其体积,
又∵正四棱锥的底面边长为,高为,
∴其体积
∵,
即,,∴,
故所制作的正四棱柱的体积比正四棱锥的体积大
(说明:裁剪方式不唯一,计算的体积也不一定相等)
点睛:本题考查了四棱锥和四棱柱的知识,需要掌握二者的特征以及其体积的求法,对于图形进行分割,画出图形即可,注意画法不唯一,结合体积公式求得体积,然后比较大小即完成解答
19、(1)最大值为,最小值为;(2).
【解析】
(1)利用两角和的正弦公式,二倍角公式以及辅助角公式将化简,再由三角函数的性质求得最值;(2)利用时,,对分类求出函数的解析式即可.
【详解】(1)
,
因为,所以,
则,
,
所以的最大值为;的最小值为;
(2)当时,
,
当时,,
,
当时,;
,
综上:在区间上的解析式为:
.
【点睛】关键点睛:本题考查了三角函数中的恒等变换应用,三角函数的周期性及其求法.熟练掌握两角和的正弦公式,二倍角公式以及辅助角公式是解决本题的关键.
20、(1);(2)
【解析】(1)根据题中条件,先由二倍角的正切公式,求出,再根据任意角的三角函数,即可求出的值;
(2)由题中条件,根据两角差的正切公式,先得到,再由同角三角函数基本关系,求出和,利用二倍角公式,以及两角和的余弦公式,即可求出结果.
【详解】(1)由题意可得,∴,或
∵,∴,即,∴
(2)∵,
,,
∴,,
∴,
,
∴
21、(1)-12;(2)12.
【解析】(1)按照向量的点积公式得到,再由向量运算的分配律得到结果;(2)根据向量垂直得到,按照运算公式展开得到结果即可.
【详解】(1)由题意得,
∴
(2)∵,∴,∴,
∴,∴
【点睛】这个题目考查了向量的点积运算,以及向量垂直的转化;向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.
展开阅读全文