收藏 分销(赏)

安徽省合肥庐阳高级中学2025年高一上数学期末检测试题含解析.doc

上传人:cg****1 文档编号:12793691 上传时间:2025-12-08 格式:DOC 页数:15 大小:553.50KB 下载积分:12.58 金币
下载 相关 举报
安徽省合肥庐阳高级中学2025年高一上数学期末检测试题含解析.doc_第1页
第1页 / 共15页
安徽省合肥庐阳高级中学2025年高一上数学期末检测试题含解析.doc_第2页
第2页 / 共15页


点击查看更多>>
资源描述
安徽省合肥庐阳高级中学2025年高一上数学期末检测试题 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.若将函数图象向左平移个单位,则平移后的图象对称轴为() A. B. C. D. 2.已知直线,且,则的值为( ) A.或 B. C. D.或 3.将函数的图象向左平移个单位,再将图象上各点的纵坐标不变,横坐标变为原来的,那么所得图象的函数表达式为 A. B. C. D. 4.在空间直角坐标系中,一个三棱锥的顶点坐标分别是,,,.则该三棱锥的体积为() A. B. C. D.2 5.函数是 A.周期为的奇函数 B.周期为的奇函数 C.周期为的偶函数 D.周期为的偶函数 6.下列函数中,最小正周期为的奇函数是() A. B. C. D. 7.函数f(x)=|x3|•ln的图象大致为(  ) A. B. C. D. 8.若方程则其解得个数为() A.3 B.4 C.6 D.5 9.函数的一个零点是( ) A. B. C. D. 10.过点与且圆心在直线上的圆的方程为 A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知,,则的值为___________. 12.设函数f(x)=,则f(-1)+f(1)=______ 13.已知函数,若,则______. 14.设当时,函数取得最大值,则__________. 15.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于-1,另一个大于1,那么实数m的取值范围是________ 16.计算:__________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.某厂生产某种产品的年固定成本为万元,每生产千件,需另投入成本为.当年产量不足千件时,(万元);当年产量不小于千件时,(万元).通过市场分析,若每件售价为元时,该厂年内生产的商品能全部售完.(利润销售收入总成本) (1)写出年利润(万元)关于年产量(千件)的函数解析式; (2)年产量为多少万件时,该厂在这一商品的生产中所获利润最大? 18.已知数列满足(,且),且,设,,数列满足. (1)求证:数列是等比数列并求出数列的通项公式; (2)求数列的前n项和; (3)对于任意,,恒成立,求实数m的取值范围. 19.已知集合,集合 (1)当时,求; (2)若,求实数的取值范围 20.我们知道:设函数的定义域为,那么“函数的图象关于原点成中心对称图形”的充要条件是“,”.有同学发现可以将其推广为:设函数的定义域为,那么“函数的图象关于点成中心对称图形”的充要条件是“,”. (1)判断函数的奇偶性,并证明; (2)判断函数的图象是否为中心对称图形,若是,求出其对称中心坐标;若不是,说明理由. 21.已知函数 (1)证明:; (2)若存在一个平行四边形的四个顶点都在函数的图象上,则称函数具有性质P,判断函数是否具有性质P,并证明你的结论; (3)设点,函数.设点B是曲线上任意一点,求线段AB长度的最小值 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】由图象平移写出平移后的解析式,再由正弦函数的性质求对称轴方程. 【详解】, 令,,则且. 故选:A. 2、D 【解析】当时,直线,,此时满足,因此适合题意; 当时,直线,化为,可得斜率, 化为,可得斜率 ∵, ∴,计算得出, 综上可得:或 本题选择D选项. 3、B 【解析】将函数的图象向左平移个单位后所得图象对应的的解析式为 ;再将图象上各点纵坐标不变,横坐标变为原来的,所得图象对应的解析式为.选B 4、A 【解析】由题,在空间直角坐标系中找到对应的点,进而求解即可 【详解】由题,如图所示, 则, 故选:A 【点睛】本题考查三棱锥的体积,考查空间直角坐标系的应用 5、A 【解析】对于函数y=sin,T=4π,且sin(-)=-sin.故选A 6、C 【解析】根据题意,分别判断四个选项中的函数的最小正周期和奇偶性即可,其中A、C选项中的函数先要用诱导公式化简. 【详解】A选项:,其定义域为,, 为偶函数,其最小正周期为,故A错误. B选项:,其最小正周期为,函数定义域为,, 函数不是奇函数,故B错误. C选项:其定义域为,, 函数为奇函数,其最小正周期为,故C正确. D选项:函数定义域为,, 函数为偶函数,其最小正周期,故D错误. 故选:C. 7、A 【解析】判断函数的奇偶性和对称性,利用特殊点的函数值是否对应进行排除即可 【详解】f(-x)=|x3|•ln=-|x3|•ln=-f(x),则函数f(x)是奇函数,图象关于原点对称,排除B,D, f()=ln=ln<0,排除C, 故选A 【点睛】本题主要考查函数图象的识别和判断,利用函数奇偶性和特殊值进行排除是解决本题的关键 8、C 【解析】分别画出和的图像,即可得出. 【详解】方程,即, 令,,易知它们都是偶函数,分别画出它们的图像, 由图可知它们有个交点. 故选:. 【点睛】本题主要考查的是函数零点,利用数型结合是解决本题的关键,同时考查偶函数的性质,是中档题. 9、B 【解析】根据正弦型函数的性质,函数的零点,即时的值,解三角方程,即可求出满足条件的的值 【详解】解:令函数, 则, 则, 当时,. 故选:B 10、B 【解析】先求得线段AB的中垂线的方程,再根据圆心又在直线上求得圆心,圆心到点A的距离为半径,可得圆的方程. 【详解】因为过点与, 所以线段AB的中点坐标为,, 所以线段AB的中垂线的斜率为, 所以线段AB的中垂线的方程为, 又因为圆心在直线上, 所以,解得, 所以圆心为, 所以圆的方程为. 故选:B 【点睛】本题主要考查圆的方程的求法,还考查了运算求解的能力,属于中档题. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】利用和角正弦公式、差角余弦公式及同角商数关系,将目标式化为即可求值. 【详解】. 故答案为:. 12、3 【解析】直接利用函数的解析式,求函数值即可 【详解】函数f(x)=, 则==3 故答案为3 【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力 13、16或-2 【解析】讨论和两种情况讨论,解方程,求的值. 【详解】当时,,成立, 当时,,成立, 所以或. 故答案为:或 14、 【解析】利用辅助角公式化简函数解析式,再根据最值情况可得解. 【详解】由辅助角公式可知,,,, 当,时取最大值, 即, , 故答案为. 15、 (0,1) 【解析】结合二次函数的性质得得到,在-1和1处的函数值均小于0即可. 【详解】结合二次函数的性质得得到,在-1和1处的函数值均小于0即可,实数m满足不等式组解得0<m<1. 故答案为(0,1) 【点睛】这个题目考查了二次函数根的分布的问题,结合二次函数的图像的性质即可得到结果,题型较为基础. 16、 【解析】. 故答案为. 点睛:(1)任何非零实数的零次幂等于1; (2)当,则; (3). 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2)万件. 【解析】(1)由题意,分别写出与对应的函数解析式,即可得分段函数解析式;(2)当时,利用二次函数的性质求解最大值,当时,利用基本不等式求解最大值,比较之后得整个范围的最大值. 【详解】解:(1)当,时, 当,时, ∴ (2)当,时,, ∴当时,取得最大值(万元) 当,时, 当且仅当,即时等号成立. 即时,取得最大值万元 综上,所以即生产量为万件时,该厂在这一商品的生产中所获利润最大为万元 【点睛】与函数相关的应用题在求解的过程中需要注意函数模型的选择,注意分段函数在应用题中的运用,求解最大值时注意利用二次函数的性质以及基本不等式求解. 18、 (1)见解析(2)(3) . 【解析】(1)将式子写为:得证,再通过等比数列公式得到的通项公式. (2)根据(1)得到进而得到数列通项公式,再利用错位相减法得到前n项和. (3)首先判断数列的单调性计算其最大值,转换为二次不等式恒成立,将 代入不等式,计算得到答案. 【详解】(1)因为, 所以,, 所以是等比数列,其中首项是,公比为, 所以,. (2), 所以, 由(1)知,,又, 所以. 所以, 所以两式相减得 . 所以. (3) ,所以当时,, 当时,,即, 所以当或时,取最大值是. 只需, 即对于任意恒成立,即 所以. 【点睛】本题考查了等比数列的证明,错位相减法求前N项和,数列的单调性,数列的最大值,二次不等式恒成立问题,综合性强,计算量大,意在考查学生解决问题的能力. 19、(1) (2) 【解析】(1)利用对数函数单调性求出,即,利用指数函数单调性解不等式,求出,从而求出并集; (2)根据集合的包含关系得到不等式,求出实数的取值范围. 【小问1详解】 因为,所以,, 由,得,所以, 当时, ∴ 【小问2详解】 由可得:,解得: 所以实数的取值范围是 20、(1)函数为奇函数,证明见解析 (2)是中心对称图形,对称中心坐标为 【解析】(1)根据奇函数的定义,即可证明结果; (2)根据题意,由函数的解析式可得,即可得结论 【小问1详解】 解:函数为奇函数 证明如下:函数的定义域为R,关于原点对称 又 所以函数为奇函数. 【小问2详解】 解:函数的图象是中心对称图形,其对称中心为点 解方程得,所以函数的定义域为 明显定义域仅关于点对称 所以若函数的图象是中心对称图形,则其对称中心横坐标必为 设其对称中心为点,则由题意可知有, 令,可得,所以 所以若函数为中心对称图形,其对称中心必定为点 下面论证函数的图象关于点成中心对称图形: 即只需证明, ,得证 21、(1)证明见解析; (2)函数具有性质P,证明见解析; (3). 【解析】(1)直接利用对数的运算求解; (2)取函数图象上四个点,证明函数具有性质P; (3)设(或),求出,再换元利用二次函数求函数的最值得解. 【小问1详解】 解: 【小问2详解】 解:由(1)知,的图象关于点中心对称, 取函数图象上两点,,显然线段CD的中点恰为点M; 再取函数图象上两点,,显然线段EF的中点也恰为点M 因此四边形CEDF的对角线互相平分,所以四边形CEDF为平行四边形, 所以函数具有性质P 小问3详解】 解:,则(或), 则 , 记(或),则, 记,则, 所以,当,即时,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服