收藏 分销(赏)

2025-2026学年山东省锦泽技工学校数学高一上期末学业质量监测试题含解析.doc

上传人:zj****8 文档编号:12791619 上传时间:2025-12-08 格式:DOC 页数:13 大小:470KB 下载积分:12.58 金币
下载 相关 举报
2025-2026学年山东省锦泽技工学校数学高一上期末学业质量监测试题含解析.doc_第1页
第1页 / 共13页
2025-2026学年山东省锦泽技工学校数学高一上期末学业质量监测试题含解析.doc_第2页
第2页 / 共13页


点击查看更多>>
资源描述
2025-2026学年山东省锦泽技工学校数学高一上期末学业质量监测试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.如果关于x的不等式x2<ax+b的解集是{x|-1<x<3},那么ba等于( ) A.-9 B.9 C.- D.-8 2.已知函数在R上为减函数,则实数a的取值范围是() A. B. C. D. 3.基本再生数R0与世代间隔T是新冠肺炎流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0 =1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( ) A.1.2天 B.1.8天 C.2.5天 D.3.5天 4.函数单调递增区间为 A. B. C. D. 5.直线与圆相交于两点,若,则的取值范围是 A. B. C. D. 6.已知函数在R上是单调函数,则的解析式可能为( ) A. B. C. D. 7.下列区间是函数的单调递减区间的是( ) A. B. C. D. 8.已知为奇函数,当时,,则() A.3 B. C.1 D. 9.函数的零点个数为( ) A.个 B.个 C.个 D.个 10.命题,一元二次方程有实根,则( ) A.,一元二次方程没有实根 B.,一元二次方程没有实根 C.,一元二次方程有实根 D.,一元二次方程有实根 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知函数的图上存在一点,函数的图象上存在一点,恰好使两点关于直线对称,则满足上述要求的实数的取值范围是___________ 12.设是以2为周期的奇函数,且,若,则的值等于___ 13.函数的反函数是___________. 14.若sinθ=,求的值_______ 15.不等式的解集是__________ 16.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为__________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17. (1)计算:lg25+lg2•lg50+lg22 (2)已知=3,求的值 18.闽东传承着中国博大精深的茶文化,讲究茶叶茶水的口感,茶水的口感与茶叶类型和水的温度有关.如果刚泡好的茶水温度是,空气的温度是,那么分钟后茶水的温度(单位:)可由公式求得,其中是一个物体与空气的接触状况而定的正常数.现有某种刚泡好的红茶水温度是,放在的空气中自然冷却,10分钟以后茶水的温度是 (1)求k的值; (2)经验表明,温度为 的该红茶水放在的空气中自然冷却至时饮用,可以产生最佳口感,那么,大约需要多长时间才能达到最佳饮用口感? (结果精确到,附:参考值) 19.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等. (1)求取出的两个球上标号为相同数字的概率; (2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由. 20.若函数f(x)满足f(logax)=·(x-)(其中a>0且a≠1). (1)求函数f(x)的解析式,并判断其奇偶性和单调性; (2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围 21.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为()件.当时,年销售总收入为()万元;当时,年销售总收入为万元.记该工厂生产并销售这种产品所得的年利润为万元.(年利润=年销售总收入一年总投资) (1)求(万元)与(件)的函数关系式; (2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少? 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】根据一元二次不等式的解集,利用根与系致的关系求出的值 ,再计的值. 【详解】由不等式的解集是, 所以是方程的两个实数根. 则,所以 所以 故选:B 2、D 【解析】根据分段函数单调性,可得关于的不等式组,解不等式组即可确定的取值范围. 【详解】函数在R上为减函数 所以满足 解不等式组可得. 故选:D 【点睛】本题考查了分段函数单调性的应用,根据分段函数的单调性求参数的取值范围,属于中档题. 3、B 【解析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,根据,解得即可得结果. 【详解】因为,,,所以,所以, 设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天, 则,所以,所以, 所以天. 故选:B. 【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题. 4、A 【解析】,所以.故选A 5、C 【解析】圆,即. 直线与圆相交于两点,若, 设圆心到直线距离. 则,解得. 即,解得 故选C. 点睛:直线与圆的位置关系常用处理方法: (1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系; (2)直线与圆相交,利用垂径定理也可以构建直角三角形; (3)直线与圆相离时,当过圆心作直线垂线时长度最小 6、C 【解析】根据条件可知当时,为增函数,在在为增函数,且,结合各选项进行分析判断即可 【详解】当时,为增函数,则在上为增函数,且, A.在上为增函数,,故不符合条件; B.为减函数,故不符合条件; C.在上为增函数,,故符合条件; D.为减函数,故不符合条件. 故选:C. 7、D 【解析】取, 得到,对比选项得到答案. 【详解】,取,, 解得,,当时,D选项满足. 故选:D. 8、B 【解析】根据奇偶性和解析式可得答案. 【详解】由题可知, 故选:B 9、C 【解析】根据给定条件直接解方程即可判断作答. 详解】由得:,即,解得,即, 所以函数的零点个数为2. 故选:C 10、B 【解析】根据全称命题的否定为特称命题可得出. 【详解】因为全称命题的否定为特称命题, 所以,一元二次方程没有实根. 故选:B. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】函数g(x)=lnx的反函数为, 若函数f(x)的图象上存在一点P,函数g(x)=lnx的图象上存在一点Q,恰好使P、Q两点关于直线y=x对称,则函数g(x)=lnx的反函数图象与f(x)图象有交点, 即在x∈R上有解,, ∵x∈R,∴ ∴即. 三、 12、 【解析】先利用求得的值,再依据题给条件用来表示,即可求得的值 【详解】∵,∴, 又∵是以2为周期的奇函数, ∴ 故答案为: 13、; 【解析】根据指数函数与对数函数互为反函数直接求解. 【详解】因为, 所以, 即的反函数为, 故答案为: 14、6 【解析】先通过诱导公式对原式进行化简,然后通分,进而通过同角三角函数的平方关系将原式转化为只含的式子,最后得到答案. 【详解】原式=+ , 因为,所以. 所以. 故答案为:6. 15、 【解析】根据对数不等式解法和对数函数的定义域得到关于的不等式组,解不等式组可得所求的解集 【详解】原不等式等价于, 所以,解得, 所以原不等式的解集为 故答案为 【点睛】解答本题时根据对数函数的单调性得到关于的不等式组即可,解题中容易出现的错误是忽视函数定义域,考查对数函数单调性的应用及对数的定义,属于基础题 16、 【解析】由题分析若对任意,总存在,使得成立,则的最大值小于等于的最大值,进而求解即可 【详解】由题,因为,对于函数,则当时,是单调递增的一次函数,则; 当时,在上单调递增,在上单调递减,则, 所以的最大值为4; 对于函数,,因为,所以,所以; 所以,即, 故, 故答案为: 【点睛】本题考查函数恒成立问题,考查分段函数的最值,考查正弦型函数的最值,考查转化思想 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)2;(2)9. 【解析】(1)利用对数的性质及运算法则直接求解 (2)利用平方公式得,x+x﹣1=()2﹣2=7,x2+x﹣2=(x+x﹣1)2﹣2=49﹣2=47,代入求解 【详解】(1)lg25+lg2•lg50+lg22 =lg52+lg2(lg5+1)+lg22 =2lg5+lg2•lg5+lg2+lg22 =2lg5+lg2+lg2(lg5+lg2) =2(lg5+lg2) =2; (2)由,得, 即x+2+x-1=9 ∴x+x-1=7 两边再平方得:x2+2+x-2=49, ∴x2+x-2=47 ∴= 【点睛】本题考查了有理指数幂的运算,考查了对数式化简求值,属于基础题 18、(1) (2) 【解析】(1)由解方程可得解; (2)令,解方程可得解. 【小问1详解】 由题意可知, ,其中, 所以, 解得 小问2详解】 设刚泡好的茶水大约需要放置分钟才能达到最佳饮用口感, 由题意可知,, 令,所以, ,, 所以, 所以刚泡好的茶水大约需要放置分钟才能达到最佳饮用口感. 19、(1)(2)这样规定公平,详见解析 【解析】(1)利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解; (2)利用古典概型及其概率的计算公式,求得的概率,即可得到结论. 【详解】由题意,设从甲、乙两个盒子中各取1个球,其数字分别为x、y. 用表示抽取结果,可得,则所有可能的结果有16种, (1)设“取出的两个球上的标号相同”为事件A,则, 事件A由4个基本事件组成,故所求概率. (2)设“甲获胜”为事件B,“乙获胜”为事件C, 则,. 可得, 即甲获胜的概率是,乙获胜的概率也是,所以这样规定公平. 【点睛】本题主要考查了古典概型的概率的计算及应用,其中解答中认真审题,利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题题. 20、(1)见解析.(2)[2-,1)∪(1,2+] 【解析】 试题分析:(1)利用换元法求函数解析式,注意换元时元的范围,再根据奇偶性定义判断函数奇偶性,最后根据复合函数单调性性质判断函数单调性(2)不等式恒成立问题一般转化为对应函数最值问题:即f(x)最大值小于4,根据函数单调性确定函数最大值,自在解不等式可得a的取值范围 试题解析: (1)令logax=t(t∈R),则x=at, ∴f(t)= (at-a-t) ∴f(x)= (ax-a-x)(x∈R) ∵f(-x)= (a-x-ax)=- (ax-a-x)=-f(x),∴f(x)为奇函数 当a>1时,y=ax为增函数,y=-a-x为增函数,且>0, ∴f(x)为增函数 当0<a<1时,y=ax为减函数,y=-a-x为减函数,且<0, ∴f(x)为增函数.∴f(x)在R上为增函数 (2)∵f(x)是R上的增函数,∴y=f(x)-4也是R上的增函数 由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒为负数, 只需f(2)-4≤0,即 (a2-a-2)≤4. ∴ ()≤4,∴a2+1≤4a,∴a2-4a+1≤0, ∴2-≤a≤2+.又a≠1, ∴a的取值范围为[2-,1)∪(1,2+] 点睛:不等式有解是含参数的不等式存在性问题时,只要求存在满足条件的即可;不等式的解集为R是指不等式的恒成立,而不等式的解集的对立面(如的解集是空集,则恒成立))也是不等式的恒成立问题,此两类问题都可转化为最值问题,即恒成立⇔,恒成立⇔. 21、(1)();(2)当年产量为件时,所得年利润最大,最大年利润为万元. 【解析】(1)根据已知条件,分当时和当时两种情况,分别求出年利润的表达式,综合可得答案; (2)根据(1)中函数解析式,求出最大值点和最大值即可 【详解】(1)由题意得:当时,, 当时,, 故(); (2)当时,, 当时,, 而当时,, 故当年产量为件时,所得年利润最大,最大年利润为万元. 【点睛】本题主要考查函数模型及最值的求法,正确建立函数关系是解题的关键,属于常考题.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服