收藏 分销(赏)

高考数学复习回扣5数列理市赛课公开课一等奖省名师优质课获奖PPT课件.pptx

上传人:快乐****生活 文档编号:12665260 上传时间:2025-11-21 格式:PPTX 页数:37 大小:1.20MB 下载积分:10 金币
下载 相关 举报
高考数学复习回扣5数列理市赛课公开课一等奖省名师优质课获奖PPT课件.pptx_第1页
第1页 / 共37页
高考数学复习回扣5数列理市赛课公开课一等奖省名师优质课获奖PPT课件.pptx_第2页
第2页 / 共37页


点击查看更多>>
资源描述
,回扣,5,数列,考前回扣,1/37,基础回归,易错提醒,回归训练,2/37,基础回归,3/37,1.,切记概念与公式,等差数列、等比数列,4/37,2.,活用定理与结论,(1),等差、等比数列,a,n,惯用性质,等差数列,等比数列,性质,若,m,,,n,,,p,,,q,N,*,,且,m,n,p,q,,,则,a,m,a,n,a,p,a,q,;,a,n,a,m,(,n,m,),d,;,S,m,,,S,2,m,S,m,,,S,3,m,S,2,m,,,仍成等差数列,若,m,,,n,,,p,,,q,N,*,,且,m,n,p,q,,则,a,m,a,n,a,p,a,q,;,a,n,a,m,q,n,m,;,S,m,,,S,2,m,S,m,,,S,3,m,S,2,m,,,仍成等比数列,(,S,m,0),5/37,(2),判断等差数列惯用方法,定义法,a,n,1,a,n,d,(,常数,)(,n,N,*,),a,n,是等差数列,.,通项公式法,a,n,pn,q,(,p,,,q,为常数,,n,N,*,),a,n,是等差数列,.,中项公式法,2,a,n,1,a,n,a,n,2,(,n,N,*,),a,n,是等差数列,.,前,n,项和公式法,S,n,An,2,Bn,(,A,,,B,为常数,,n,N,*,),a,n,是等差数列,.,6/37,(3),判断等比数列惯用方法,定义法,通项公式法,a,n,cq,n,(,c,,,q,均是不为,0,常数,,n,N,*,),a,n,是等比数列,.,中项公式法,7/37,3.,数列求和惯用方法,(1),等差数列或等比数列求和,直接利用公式求和,.,(2),形如,a,n,b,n,(,其中,a,n,为等差数列,,b,n,为等比数列,),数列,利用错位相减法求和,.,8/37,(4),通项公式形如,a,n,(,1),n,n,或,a,n,a,(,1),n,(,其中,a,为常数,,n,N,*,),等正负项交叉数列求和普通用并项法,.,并项时应注意分,n,为奇数、偶数两种情况讨论,.,(5),分组求和法:分组求和法是处理通项公式能够写成,c,n,a,n,b,n,形式数列求和问题方法,其中,a,n,与,b,n,是等差,(,比,),数列或一些能够直接求和数列,.,(6),并项求和法:先将一些项放在一起求和,然后再求,S,n,.,9/37,易错提醒,10/37,1.,已知数列前,n,项和求,a,n,,易忽略,n,1,情形,直接用,S,n,S,n,1,表示,.,实际上,当,n,1,时,,a,1,S,1,;当,n,2,时,,a,n,S,n,S,n,1,.,11/37,4.,易忽略等比数列中公比,q,0,造成增解,易忽略等比数列奇数项或偶数项符号相同造成增解,.,5.,利用等比数列前,n,项和公式时,易忘记分类讨论,.,一定分,q,1,和,q,1,两种情况进行讨论,.,6.,利用错位相减法求和时,要注意寻找规律,不要遗漏第一项和最终一项,.,7.,裂项相消法求和时,分裂前后值要相等,,8.,通项中含有,(,1),n,数列求和时,要把结果写成,n,为奇数和,n,为偶数两种情况分段形式,.,12/37,III,回归训练,13/37,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1.,设等差数列,a,n,前,n,项和为,S,n,,已知,S,13,0,,,S,14,0,,若,a,k,a,k,1,0,,则,k,等于,A.6 B.7 C.13 D.14,解析,因为,a,n,为等差数列,,S,13,13,a,7,,,S,14,7(,a,7,a,8,),,,所以,a,7,0,,,a,8,0,,,a,7,a,8,0,,所以,k,7.,14/37,答案,解析,2.,已知在等比数列,a,n,中,,a,1,a,2,3,,,a,3,a,4,12,,则,a,5,a,6,等于,A.3 B.15 C.48 D.63,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,15/37,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,3.,设等差数列,a,n,前,n,项和为,S,n,,且,a,1,0,,,a,3,a,10,0,,,a,6,a,7,0,,则满足,S,n,0,最大自然数,n,值为,A.6 B.7C.12 D.13,解析,a,1,0,,,a,6,a,7,0,,,a,6,0,,,a,7,0,,等差数列公差小于零,,又,a,3,a,10,a,1,a,12,0,,,a,1,a,13,2,a,7,0,,,S,12,0,,,S,13,0,,,满足,S,n,0,最大自然数,n,值为,12.,16/37,解析,由已知,,,所以,a,n,1,a,n,2,,所以数列,a,n,是公差为,2,等差数列,,a,5,a,7,a,9,(,a,2,3,d,),(,a,4,3,d,),(,a,6,3,d,),(,a,2,a,4,a,6,),9,d,9,9,2,27,,,所以,故选,C.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17/37,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,5.,已知正数组成等比数列,a,n,,若,a,1,a,20,100,,那么,a,7,a,14,最小值为,A.20 B.25C.50 D.,不存在,解析,在正数组成等比数列,a,n,中,,因为,a,1,a,20,100,,由等比数列性质可得,a,1,a,20,a,4,a,17,100,,,当且仅当,a,7,a,14,10,时取等号,,所以,a,7,a,14,最小值为,20.,18/37,解析,a,n,1,S,n,1,S,n,2,a,n,1,4,(2,a,n,4),a,n,1,2,a,n,,,再令,n,1,,,S,1,2,a,1,4,a,1,4,,,数列,a,n,是以,4,为首项,,2,为公比等比数列,,a,n,42,n,1,2,n,1,,故选,A.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,6.,已知数列,a,n,前,n,项和为,S,n,,若,S,n,2,a,n,4(,n,N,*,),,则,a,n,等于,A.2,n,1,B.2,n,C.2,n,1,D.2,n,2,19/37,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,在等差数列,a,n,中,,a,2,,,a,4,,,a,8,成等比数列,,20/37,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,8.,已知,S,n,为数列,a,n,前,n,项和,若,a,n,(4,cos,n,),n,(2,cos,n,),,则,S,20,等于,A.31 B.122,C.324 D.484,解析,由题意可知,因为,a,n,(4,cos,n,),n,(2,cos,n,),,,所以数列,a,n,奇数项组成首项为,1,,公差为,2,等差数列,,所以,S,20,(,a,1,a,3,a,19,),(,a,2,a,4,a,20,),122,,故选,B.,21/37,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,22/37,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,由题意,a,1,,,a,3,,,a,13,成等比数列,,可得,(1,2,d,),2,1,12,d,,解得,d,2,,,故,a,n,2,n,1,,,S,n,n,2,,,当,n,2,时取得最小值,4.,23/37,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,24/37,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,25/37,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,20,11.,在等差数列,a,n,中,已知,a,3,a,8,10,,则,3,a,5,a,7,_.,解析,设公差为,d,,则,a,3,a,8,2,a,1,9,d,10,,,3,a,5,a,7,3(,a,1,4,d,),(,a,1,6,d,),4,a,1,18,d,2,10,20.,26/37,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,12.,若等比数列,a,n,各项均为正数,且,a,10,a,11,a,9,a,12,2e,5,,则,ln,a,1,ln,a,2,ln,a,20,_.,50,解析,数列,a,n,为等比数列,且,a,10,a,11,a,9,a,12,2e,5,,,a,10,a,11,a,9,a,12,2,a,10,a,11,2e,5,,,a,10,a,11,e,5,,,ln,a,1,ln,a,2,ln,a,20,ln(,a,1,a,2,a,20,),ln(,a,10,a,11,),10,ln(e,5,),10,ln e,50,50.,27/37,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,13.,数列,a,n,前,n,项和为,S,n,.,已知,a,1,2,,,S,n,1,(,1),n,S,n,2,n,,则,S,100,_.,198,解析,当,n,为偶数时,,S,n,1,S,n,2,n,,,S,n,2,S,n,1,2,n,2,,,所以,S,n,2,S,n,4,n,2,,,故,S,n,4,S,n,2,4(,n,2),2,,所以,S,n,4,S,n,8,,,由,a,1,2,知,,S,1,2,,又,S,2,S,1,2,,所以,S,2,4,,,因为,S,4,S,2,4,2,2,10,,所以,S,4,6,,,所以,S,8,S,4,8,,,S,12,S,8,8,,,,,S,100,S,96,8,,,所以,S,100,24,8,S,4,192,6,198.,28/37,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,14.,若数列,a,n,满足,a,2,a,1,a,3,a,2,a,4,a,3,a,n,1,a,n,,则称数列,a,n,为,“,差递减,”,数列,.,若数列,a,n,是,“,差递减,”,数列,且其通项,a,n,与其前,n,项和,S,n,(,n,N,*,),满足,2,S,n,3,a,n,2,1(,n,N,*,),,则实数,取值范围,是,_.,29/37,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,当,n,1,时,,2,a,1,3,a,1,2,1,,,a,1,1,2,,,当,n,1,时,,2,S,n,1,3,a,n,1,2,1,,,所以,2,a,n,3,a,n,3,a,n,1,,,a,n,3,a,n,1,,,所以,a,n,(1,2,)3,n,1,,,a,n,a,n,1,(1,2,)3,n,1,(1,2,)3,n,2,(2,4,)3,n,2,,,依题意,(2,4,)3,n,2,是一个减数列,所以,2,4,0,,,.,30/37,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,15.,S,n,为等差数列,a,n,前,n,项和,且,a,1,1,,,S,7,28.,记,b,n,lg,a,n,,其中,x,表示不超出,x,最大整数,如,0.9,0,,,lg 99,1.,(1),求,b,1,,,b,11,,,b,101,;,解,设,a,n,公差为,d,,由已知可知,,解得,d,1,,所以,a,n,通项公式为,a,n,1,(,n,1),1,n,.,b,1,lg 1,0,,,b,11,lg 11,1,,,b,101,lg 101,2.,31/37,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,(2),求数列,b,n,前,1 000,项和,.,所以数列,b,n,前,1 000,项和为,1,90,2,900,3,1,1 893.,32/37,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,33/37,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,由,化简得,(,a,n,a,n,1,)(,a,n,a,n,1,2),0,,,又数列,a,n,各项为正数,,a,n,2,n,1.,34/37,证实,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,35/37,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,36/37,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,37/37,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服