资源描述
,单击此处编辑母版文本样式,课前热身,课堂导学,课堂评价,第七章数列、推理与证明,高考总复习 一轮复习导学案 数学文科,单击此处编辑母版文本样式,第七章数列、推理与证明,1/48,第42课数列求和,2/48,课 前 热 身,3/48,激活思维,4/48,2 101,5/48,6/48,7/48,8/48,1.惯用普通数列求和方法,(1)公式法:若能够判断出所求数列是等差或等比数列,则能够直接利用公式进行求和若数列不是等差数列,也不是等比数列,有时可直接利用常见基本求和公式进行求和,(2)分组转化法:把数列每一项拆成两项差(或和),或把数列项重新组合,使其转化为等差或等比数列,(3)裂项相消法:把数列通项拆成两项差(或和),使求和时出现一些正负项相互抵消,于是前,n,项和变成首尾两项或少数几项和(差),知识梳理,9/48,(4)倒序相加法:把,S,n,中项次序首尾颠倒过来,再与原来次序,S,n,相加这种方法表达了“补”思想,等差数列前,n,项和公式就是用它推导出来实际上,假如一个数列倒过来与原数列相加时,若有公因式可提,而且剩下项和可求出来,那么这么数列就能够用倒序相加法求和,(5)错位相减法:数列,a,n,b,n,求和问题应用此法,其中,a,n,是等差数列,,b,n,是等比数列,10/48,11/48,(3)形如,a,n,b,n,形式(其中,a,n,为等差数列,,b,n,为等比数列),方法:采取错位相减法,(4)首尾对称两项和为定值形式,方法:倒序相加法,(5)正负交替出现数列形式,方法:并项相加法.,12/48,课 堂 导 学,13/48,利用“分组转化法”求和,例 1,14/48,所以,S,n,2,n,2,n,.,当,n,2时,,a,n,S,n,S,n,1,2,n,2,n,2(,n,1),2,(,n,1)4,n,3;,当,n,1时,,a,1,S,1,1,满足上式,综上,数列,a,n,通项公式为,a,n,4,n,3.,15/48,(2)若,b,n,(1),n,a,n,,求数列,b,n,前,n,项和,T,n,.,【解答】,由(1)可得,b,n,(1),n,a,n,(1),n,(4,n,3),,16/48,【思维引导】,第(1)问利用项与和之间关系求出通项公式;第(2)问因为通项公式中含有(1),n,,故采取分奇偶讨论来求和,【,精关键点评,】,本题中,b,n,是一个摆动数列,适合用于分组求和,当一个数列是由两个不一样类型数列相加而成时,我们需要将它们进行分组,然后分别求和,17/48,设数列,a,n,前,n,项和为,S,n,,对任意,n,N,*,满足2,S,n,a,n,(,a,n,1),且,a,n,0.,(1)求数列,a,n,通项公式;,【解答】,(1)因为2,S,n,a,n,(,a,n,1),,所以当,n,2时,2,S,n,1,a,n,1,(,a,n,1,1),即(,a,n,a,n,1,)(,a,n,a,n,1,1)0.,若,a,n,a,n,1,10,,当,n,2时,有,a,n,a,n,1,1,,变式,18/48,又当,n,1时,由2,S,1,a,1,(,a,1,1)及,a,1,0,得,a,1,1,,所以数列,a,n,是等差数列,其通项公式为,a,n,n,(,n,N,*,),19/48,20/48,21/48,利用“倒序相加法”求和,例 2,22/48,23/48,24/48,【思维引导】,(1)熟练地利用对数三个运算性质并配以代数式恒等变换是对数计算、化简、证实惯用技巧;(2)若前后项和相加为定值,则采取倒序相加法求数列和,其基本思想和等差数列前,n,项和相类似,25/48,(广州模拟),设,S,n,为数列,a,n,前,n,项和,已知,a,1,2,对任意,n,N,*,,都有2,S,n,(,n,1),a,n,.,(1)求数列,a,n,通项公式;,【解答】,(1)因为2,S,n,(,n,1),a,n,,,当,n,2时,2,S,n,1,na,n,1,,,两式相减,得2,a,n,(,n,1),a,n,na,n,1,,,即(,n,1),a,n,na,n,1,,,利用“裂项相消法”求和,例 3,26/48,27/48,28/48,【思维引导】,(1)先找出递推关系;(2)数列背景下不等式证实惯用放缩法、单调性求最值法,29/48,30/48,【解答】,(1)由,S,(,n,2,n,3),S,n,3(,n,2,n,)0,,得(,S,n,3)(,S,n,n,2,n,)0,,则,S,n,n,2,n,或,S,n,3.,因为数列,a,n,各项均为正数,,所以,S,n,n,2,n,,,S,n,1,(,n,1),2,(,n,1),,所以当,n,2时,,a,n,S,n,S,n,1,n,2,n,(,n,1),2,(,n,1)2,n,.,又,a,1,221,满足上式,所以,a,n,2,n,.,变式,31/48,32/48,33/48,(山东卷),已知数列,a,n,前,n,项和为,S,n,3,n,2,8,n,,,b,n,是等差数列,且,a,n,b,n,b,n,1,.,(1)求数列,b,n,通项公式;,【解答】,(1)由题意知,当,n,2时,,a,n,S,n,S,n,1,6,n,5,当,n,1时,,a,1,S,1,11,满足上式,所以,a,n,6,n,5.,设数列,b,n,公差为,d,.,利用“错位相减法”求和,例 4,34/48,35/48,又,T,n,c,1,c,2,c,n,,,得,T,n,322,2,32,3,(,n,1)2,n,1,,,2,T,n,322,3,32,4,(,n,1)2,n,2,,,36/48,【思维引导】,第(1)小问,先依据所给,S,n,求出,a,n,,再求出,b,n,;第(2)小问,求出,c,n,后,用错位相减法求解,【,精关键点评,】,(1)假如数列,a,n,是等差数列,,b,n,是等比数列,使用错位相减法求数列,a,n,b,n,前,n,项和,(2)在写出,“,S,n,”,与,“,qS,n,”,表示式后,,“,错位相减,”,本质是,“,指数相同两式相减,”,,所以要将两式,“,指数相同两项对齐,”,,方便下一步准确写出,“,S,n,qS,n,”,表示式,37/48,两式相减得,a,n,3,n,(,n,2,,n,N,*,),,又,a,1,S,1,3也满足上式,综上,数列,a,n,通项公式为,a,n,3,n,.,变式,38/48,(2)若,b,n,a,n,log,3,a,n,,求数列,b,n,前,n,项和,T,n,.,【解答】,由(1)知,b,n,a,n,log,3,a,n,n,3,n,,,则,T,n,323,2,33,3,n,3,n,,,3,T,n,13,2,23,3,(,n,1)3,n,n,3,n,1,,,两式相减得2,T,n,33,2,3,3,3,n,n,3,n,1,39/48,已知等差数列,a,n,公差为2,前,n,项和为,S,n,,且,S,1,,,S,2,,,S,4,成等比数列,(1)求数列,a,n,通项公式;,由题意得(2,a,1,2),2,a,1,(4,a,1,12),,解得,a,1,1,所以,a,n,2,n,1.,备用例题,40/48,41/48,42/48,课 堂 评 价,43/48,1.,(苏州期中),已知等差数列,a,n,前,n,项和为,S,n,,若,S,4,8,a,1,,,a,4,4,a,2,,则,S,10,_.,120,44/48,45/48,7,46/48,47/48,(2)设,b,n,(,a,n,1)2,a,n,,求数列,b,n,前,n,项和,T,n,.,【解答】,由(1)知,b,n,2,n,2,2,n,1,n,4,n,,,所以,T,n,14,1,24,2,n,4,n,,,所以4,T,n,14,2,24,3,n,4,n,1,,,48/48,
展开阅读全文