资源描述
,9.5,椭圆,1/76,基础知识自主学习,课时作业,题型分类深度剖析,内容索引,2/76,基础知识自主学习,3/76,1.,椭圆概念,平面内到两个定点,F,1,,,F,2,距离和等于常数,(,大于,F,1,F,2,),点轨迹叫做,,两个定点,F,1,,,F,2,叫做椭圆,,两焦点间距离叫做椭圆,.,集合,P,M,|,MF,1,MF,2,2,a,,,F,1,F,2,2,c,,其中,a,0,,,c,0,,且,a,,,c,为常数:,(1),若,,则集合,P,为椭圆;,(2),若,,则集合,P,为线段;,(3),若,,则集合,P,为空集,.,知识梳理,椭圆,焦点,焦距,a,c,a,c,a,b,0),(,a,b,0),图形,5/76,性,质,范围,a,x,a,b,y,b,b,x,b,a,y,a,对称性,对称轴:坐标轴对称中心:原点,顶点,A,1,(,a,0),,,A,2,(,a,0),B,1,(0,,,b,),,,B,2,(0,,,b,),A,1,(0,,,a,),,,A,2,(0,,,a,),B,1,(,b,0),,,B,2,(,b,0),轴,长轴A1A2长为 ;短轴B1B2长为_,焦距,F,1,F,2,_,离心率,e,(0,1),a,b,c关系,_,2,a,2,b,2,c,a,2,b,2,c,2,6/76,知识拓展,点,P,(,x,0,,,y,0,),和椭圆关系,(1),点,P,(,x,0,,,y,0,),在椭圆内,1.,7/76,思索辨析,判断以下结论是否正确,(,请在括号中打,“”,或,“”,),(1),平面内到两个定点,F,1,,,F,2,距离和等于常数点轨迹叫做椭圆,.(,),(2),椭圆上一点,P,与两焦点,F,1,,,F,2,组成,PF,1,F,2,周长为,2,a,2,c,(,其中,a,为椭圆长半轴长,,c,为椭圆半焦距,).(,),(3),椭圆离心率,e,越大,椭圆就越圆,.(,),(4),方程,mx,2,ny,2,1(,m,0,,,n,0,,,m,n,),表示曲线是椭圆,.(,),(5),1(,a,b,),表示焦点在,y,轴上椭圆,.(,),(6),1(,a,b,0),与,1(,a,b,0),焦距相等,.(,),8/76,考点自测,1.(,教材改编,),椭圆,1,焦距为,4,,则,m,_.,答案,解析,4,或,8,由题意知,解得,m,4,或,m,8.,9/76,2.(,苏州检测,),在平面直角坐标系,xOy,内,动点,P,到定点,F,(,1,0),距离与,P,到定直线,x,4,距离比值为,.,则动点,P,轨迹,C,方程,为,_.,答案,解析,设点,P,(,x,,,y,),,由题意知,,,化简得,3,x,2,4,y,2,12,,,所以动点,P,轨迹,C,方程为,1.,10/76,3.(,全国乙卷改编,),直线,l,经过椭圆一个顶点和一个焦点,若椭圆,中心到,l,距离为其短轴长,,则该椭圆离心率为,_.,答案,解析,如图,由题意得,,BF,a,,,OF,c,,,OB,b,,,OD,2,b,b,.,在,Rt,FOB,中,,OF,OB,BF,OD,,,即,cb,a,b,,,解得,a,2,c,,故椭圆离心率,e,.,11/76,4.,假如方程,x,2,ky,2,2,表示焦点在,y,轴上椭圆,那么实数,k,取值范围是,_.,答案,解析,(0,1),将椭圆方程化为,1,,,因为焦点在,y,轴上,则,2,,即,k,0,,所以,0,k,0,,所以,x,,,所以,P,点坐标为,或,13/76,题型分类深度剖析,14/76,题型一椭圆定义及标准方程,命题点,1,利用定义求轨迹,例,1,(,徐州模拟,),如图所表示,一圆形纸片圆心为,O,,,F,是圆内一定点,,M,是圆周上一动点,把纸片折叠使,M,与,F,重合,然后抹平纸片,折痕为,CD,,设,CD,与,OM,交于点,P,,则点,P,轨迹是,_.,答案,解析,椭圆,由条件知,PM,PF,,,PO,PF,PO,PM,OM,R,OF,.,P,点轨迹是以,O,,,F,为焦点椭圆,.,几何画板展示,15/76,命题点,2,利用待定系数法求椭圆方程,例,2,(1),已知椭圆以坐标轴为对称轴,且长轴长是短轴长,3,倍,而且,过点,P,(3,0),,则椭圆方程为,_.,答案,解析,y,2,1,或,1,16/76,若焦点在,x,轴上,,设方程为,1(,a,b,0).,椭圆过,P,(3,0),,,1,,即,a,3,,,又,2,a,3,2,b,,,b,1,,,椭圆方程为,y,2,1.,若焦点在,y,轴上,设方程为,1(,a,b,0).,椭圆过点,P,(3,0),,,1,,即,b,3.,又,2,a,3,2,b,,,a,9,,,椭圆方程为,1.,所求椭圆方程为,y,2,1,或,1.,17/76,(2),已知椭圆中心在原点,以坐标轴为对称轴,且经过两点,P,1,(,,,1),,,P,2,(),,则椭圆方程为,_.,答案,解析,设椭圆方程为,mx,2,ny,2,1(,m,0,,,n,0,且,m,n,).,椭圆经过点,P,1,,,P,2,,,点,P,1,,,P,2,坐标适合椭圆方程,.,两式联立,解得,所求椭圆方程为,1.,18/76,命题点,3,利用定义处理,“,焦点三角形,”,问题,例,3,已知,F,1,,,F,2,是椭圆,C,:,1(,a,b,0),两个焦点,,P,为椭圆,C,上一点,且,.,若,PF,1,F,2,面积为,9,,则,b,_.,答案,解析,3,设,PF,1,r,1,,,PF,2,r,2,,,因为,2,r,1,r,2,(,r,1,r,2,),2,(,),4,a,2,4,c,2,4,b,2,,,又因为,所以,b,3.,几何画板展示,19/76,引申探究,1.,在例,3,中,若增加条件,“,PF,1,F,2,周长为,18,”,,其它条件不变,求该椭圆方程,.,解答,由原题得,b,2,a,2,c,2,9,,,又,2,a,2,c,18,,,所以,a,c,1,,解得,a,5,,,故椭圆方程为,1.,20/76,2.,在例,3,中,若将条件,“”“,PF,1,F,2,面积为,9,”,分别改为,“,F,1,PF,2,60,”“,”,,结果怎样?,解答,PF,1,PF,2,2,a,,又,F,1,PF,2,60,,,所以,2,PF,1,PF,2,cos 60,,,即,(,PF,1,PF,2,),2,3,PF,1,PF,2,4,c,2,,,所以,PF,1,PF,2,b,2,,,所以,3,PF,1,PF,2,4,a,2,4,c,2,4,b,2,,,所以,PF,1,PF,2,,,又因为,所以,b,3.,21/76,(1),求椭圆方程多采取定义法和待定系数法,利用椭圆定义定形状时,一定要注意常数,2,a,F,1,F,2,这一条件,.,(2),求椭圆标准方程基本方法是待定系数法,详细过程是先定形,再定量,即首先确定焦点所在位置,然后再依据条件建立关于,a,,,b,方程组,.,假如焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为,mx,2,ny,2,1(,m,0,,,n,0,,,m,n,),形式,.,(3),当,P,在椭圆上时,与椭圆两焦点,F,1,,,F,2,组成三角形通常称为,“,焦点三角形,”,,利用定义可求其周长;利用定义和余弦定理可求,PF,1,PF,2,;经过整体代入可求其面积等,.,思维升华,22/76,跟踪训练,1,(1)(,盐城模拟,),已知两圆,C,1,:,(,x,4),2,y,2,169,,,C,2,:,(,x,4),2,y,2,9,,动圆在圆,C,1,内部且和圆,C,1,相内切,和圆,C,2,相外切,则动圆,圆心,M,轨迹方程为,_.,答案,解析,设圆,M,半径为,r,,,则,MC,1,MC,2,(13,r,),(3,r,),168,C,1,C,2,,,所以,M,轨迹是以,C,1,,,C,2,为焦点椭圆,且,2,a,16,2,c,8,,,故所求轨迹方程为,1.,几何画板展示,23/76,(2)(,镇江模拟,),设,F,1,、,F,2,分别是椭圆,y,2,1,左、右焦点,若椭圆上存在一点,P,,使,0(,O,为坐标原点,),,则,F,1,PF,2,面积是,_.,1,PF,1,PF,2,,,F,1,PF,2,90.,设,PF,1,m,,,PF,2,n,,,则,m,n,4,,,m,2,n,2,12,2,mn,4,,,答案,解析,24/76,题型二椭圆几何性质,例,4,(1),已知点,F,1,,,F,2,是椭圆,x,2,2,y,2,2,左,右焦点,点,P,是该椭圆上一个动点,那么,最小值是,_.,2,答案,解析,设,P,(,x,0,,,y,0,),,则,(,1,x,0,,,y,0,),,,(1,x,0,,,y,0,),,,(,2,x,0,,,2,y,0,),,,点,P,在椭圆上,,0,1,,,当,1,时,,取最小值,2.,25/76,(2)(,全国丙卷改编,),已知,O,为坐标原点,,F,是椭圆,C,:,1(,a,b,0),左焦点,,A,,,B,分别为椭圆,C,左,右顶点,.,P,为,C,上一点,且,PF,x,轴,.,过点,A,直线,l,与线段,PF,交于点,M,,与,y,轴交于点,E,.,若直线,BM,经,过,OE,中点,则,C,离心率为,_.,答案,解析,设,M,(,c,,,m,),,则,,,OE,中点为,D,,则,,,又,B,,,D,,,M,三点共线,所以,,,a,3,c,,,e,.,26/76,(1),利用椭圆几何性质注意点及技巧,注意椭圆几何性质中不等关系,在求与椭圆相关一些量范围,或者最大值、最小值时,经惯用到椭圆标准方程中,x,,,y,范围,离心率范围等不等关系,.,利用椭圆几何性质技巧,求解与椭圆几何性质相关问题时,要结合图形进行分析,当包括顶点、焦点、长轴、短轴等椭圆基本量时,要理清它们之间内在联络,.,(2),求椭圆离心率问题普通思绪,求椭圆离心率或其范围时,普通是依据题设得出一个关于,a,,,b,,,c,等式或不等式,利用,a,2,b,2,c,2,消去,b,,即可求得离心率或离心率范围,.,思维升华,27/76,跟踪训练,2,(,江苏,),如图,在平面直角坐标系,xOy,中,,F,是椭圆,1(,a,b,0),右焦点,直线,y,与椭圆交于,B,,,C,两点,且,BFC,90,,则该椭圆离心率是,_.,答案,解析,28/76,联立方程组,解得,B,,,C,两点坐标为,又,F,(,c,0),,则,又由,BFC,90,,可得,0,,代入坐标可得,c,2,0,,,又因为,b,2,a,2,c,2,.,代入,式可化简为,,则椭圆离心率为,e,.,29/76,题型三直线与椭圆,例,5,(,天津,),设椭圆,1(,a,),右焦点为,F,,右顶点为,A,.,已知,,其中,O,为原点,,e,为椭圆离心率,.,(1),求椭圆方程;,解答,设,F,(,c,0),,由,,,可得,a,2,c,2,3,c,2,.,又,a,2,c,2,b,2,3,,所以,c,2,1,,所以,a,2,4.,所以椭圆方程为,1.,30/76,(2),设过点,A,直线,l,与椭圆交于点,B,(,B,不在,x,轴上,),,垂直于,l,直线与,l,交于点,M,,与,y,轴交于点,H,.,若,BF,HF,,且,MOA,MAO,,求直线,l,斜率取值范围,.,证实,31/76,设直线,l,斜率为,k,(,k,0),,则直线,l,方程为,y,k,(,x,2).,设,B,(,x,B,,,y,B,),,由方程组,消去,y,,,整理得,(4,k,2,3),x,2,16,k,2,x,16,k,2,12,0,,,解得,x,2,或,x,.,由题意,得,x,B,,从而,y,B,.,由,(1),知,,F,(1,0),,设,H,(0,,,y,H,),,,由,BF,HF,,得,0,,,所以,0,,解得,y,H,.,32/76,设,M,(,x,M,,,y,M,),,由方程组,消去,y,,,所以直线,MH,方程为,y,.,设,M,(,x,M,,,y,M,),,由方程组消去,y,,,在,MAO,中,,MOA,MAO,MA,MO,,即,(,x,M,2),2,,,化简得,x,M,1,,即,1,,,解得,x,M,.,解得,k,或,k,.,所以直线,l,斜率取值范围为,33/76,(1),处理直线与椭圆位置关系相关问题,其常规思绪是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数关系建立方程,处理相关问题,.,包括弦中点问题时用,“,点差法,”,处理,往往会更简单,.,(2),设直线与椭圆交点坐标为,A,(,x,1,,,y,1,),,,B,(,x,2,,,y,2,),,则,(,k,为直线斜率,).,提醒:利用公式计算直线被椭圆截得弦长是在方程有解情况下进行,不要忽略判别式,.,思维升华,34/76,跟踪训练,3,如图,已知椭圆,O,:,y,2,1,右焦点为,F,,,B,,,C,分别为椭圆,O,上,下顶点,,P,是直线,l,:,y,2,上一个动点,(,与,y,轴交点除外,),,直线,PC,交椭圆,O,于另一点,M,.,(1),当直线,PM,过椭圆右焦点,F,时,求,FBM,面积;,解答,35/76,由题意知,B,(0,1),,,C,(0,,,1),,焦点,F,(,,,0),,,当直线,PM,过椭圆,O,右焦点,F,时,,直线,PM,方程为,1,,即,y,1.,联立,解得,或,(,舍去,),,,即点,M,坐标为,().,36/76,连结,BF,,则直线,BF,方程为,1,,,即,x,0.,又,BF,a,2,,点,M,到直线,BF,距离为,故,FBM,面积为,S,MBF,37/76,(2),记直线,BM,,,BP,斜率分别为,k,1,,,k,2,,求证:,k,1,k,2,为定值;,解答,38/76,方法一设,P,(,m,,,2),,且,m,0,,,则直线,PM,斜率为,k,则直线,PM,方程为,y,x,1.,联立,消去,y,,得,0,,,解得点,M,坐标为,(),,,所以,k,1,k,2,为定值,.,39/76,方法二,设点,M,坐标为,(,x,0,,,y,0,)(,x,0,0),,,则直线,PM,方程为,y,x,1,,,令,y,2,,得点,P,坐标为,(,,,2),,,40/76,求,取值范围,.,解答,41/76,方法一由,知,,(,m,3),,,令,m,2,4,t,4,,,因为,y,t,7,在,t,(4,,,),上单调递增,,故,取值范围为,(9,,,).,42/76,因为,y,t,7,在,t,(0,2),上单调递减,,令,t,y,0,1,(0,2),,,故,取值范围为,(9,,,).,43/76,考点分析,离心率是椭圆主要几何性质,是高考重点考查一个知识点,这类问题普通有两类:一类是依据一定条件求椭圆离心率;另一类是依据一定条件求离心率取值范围,不论是哪类问题,其难点都是建立关于,a,,,b,,,c,关系式,(,等式或不等式,),,而且最终要把其中,b,用,a,,,c,表示,转化为关于离心率,e,关系式,这是化解相关椭圆离心率问题难点根本方法,.,高考中求椭圆离心率问题,高频小考点,8,44/76,典例,1,(,福建改编,),已知椭圆,E,:,1(,a,b,0),右焦点为,F,,短轴一个端点为,M,,直线,l,:,3,x,4,y,0,交椭圆,E,于,A,,,B,两点,.,若,AF,BF,4,,点,M,到直线,l,距离大于,,则椭圆,E,离心率取值范围,是,_.,答案,解析,45/76,左焦点,F,0,,连结,F,0,A,,,F,0,B,,,则四边形,AFBF,0,为平行四边形,.,AF,BF,4,,,AF,AF,0,4,,,a,2.,设,M,(0,,,b,),,则,,,1,b,2.,46/76,典例,2,(14,分,)(,浙江,),如图,设椭圆,y,2,1(,a,1).,(1),求直线,y,kx,1,被椭圆截得线段长,(,用,a,,,k,表示,),;,(2),若任意以点,A,(0,1),为圆心圆与椭圆至多有,3,个公共点,求椭圆离心率取值范围,.,规范解答,47/76,解,(1),设直线,y,kx,1,被椭圆截得线段为,AM,,,由,得,(1,a,2,k,2,),x,2,2,a,2,kx,0,,,故,x,1,0,,,x,2,,,6,分,(2),假设圆与椭圆公共点有,4,个,,由对称性可设,y,轴左侧椭圆上有两个不一样点,P,,,Q,,满足,AP,AQ,.,记直线,AP,,,AQ,斜率分别为,k,1,,,k,2,,,且,k,1,,,k,2,0,,,k,1,k,2,.,8,分,48/76,由,k,1,k,2,,,k,1,,,k,2,0,,得,1,a,2,(2,a,2,),0,,,所以,1,a,2,(,a,2,2),,,因为,式关于,k,1,,,k,2,方程有解充要条件是,1,a,2,(,a,2,2),1,,,所以,a,.12,分,49/76,所以,任意以点,A,(0,1),为圆心圆与椭圆至多有,3,个公共点充要条件为,1,a,,,所以离心率取值范围是,(0,,,.,14,分,50/76,课时作业,51/76,1.(,苏北四市联考,),已知椭圆中心在原点,离心率,e,,且它,一个焦点与抛物线,y,2,4,x,焦点重合,则此椭圆方程为,_.,答案,解析,依题意,可设椭圆标准方程为,1(,a,b,0),,,由已知可得抛物线焦点为,(,1,0),,所以,c,1,,,又离心率,e,,解得,a,2,,,b,2,a,2,c,2,3,,,所以椭圆方程为,1.,1,2,3,4,5,6,7,8,9,10,11,12,13,52/76,2.(,苏北四市一模,),已知椭圆,1(,a,b,0),,点,A,、,B,1,、,B,2,、,F,依次为其左顶点、下顶点、上顶点和右焦点,.,若直线,AB,2,与直线,B,1,F,交点,恰在直线,x,上,则椭圆离心率为,_.,答案,解析,由题意知直线,AB,2,:,1,,直线,B,1,F,:,1,,,联立解得,x,,若交点在椭圆右准线上,,则,,即,2,c,2,ac,a,2,0,,,所以,2,e,2,e,1,0,,解得,e,.,1,2,3,4,5,6,7,8,9,10,11,12,13,53/76,3.(,青岛,月考,),已知,A,1,,,A,2,分别为椭圆,C,:,1(,a,b,0),左,右顶点,,P,是椭圆,C,上异于,A,1,,,A,2,任意一点,若直线,PA,1,,,PA,2,斜率,乘积为,,则椭圆,C,离心率为,_.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,54/76,4.(,南昌模拟,),已知椭圆:,x,2,1,,过点,P,(),直线与椭圆相交于,A,,,B,两点,且弦,AB,被点,P,平分,则直线,AB,方程为,_.,答案,解析,9,x,y,5,0,1,2,3,4,5,6,7,8,9,10,11,12,13,55/76,设,A,(,x,1,,,y,1,),,,B,(,x,2,,,y,2,),,因为,A,,,B,在椭圆,x,2,1,上,,即,(,x,1,x,2,)(,x,1,x,2,),0,,,又弦,AB,被点,P,(),平分,,所以,x,1,x,2,1,,,y,1,y,2,1,,,将其代入上式,得,x,1,x,2,0,,得,9,,,即直线,AB,斜率为,9,,所以直线,AB,方程为,y,9(,x,),,,即,9,x,y,5,0.,1,2,3,4,5,6,7,8,9,10,11,12,13,56/76,5.(,宿迁模拟,),已知,F,1,、,F,2,是椭圆,y,2,1,两个焦点,,P,为椭圆上一动点,则使,PF,1,PF,2,取得最大值点,P,为,_.,答案,解析,(0,1),或,(0,,,1),由椭圆定义得,PF,1,PF,2,2,a,4,,,PF,1,PF,2,(),2,4,,,当且仅当,PF,1,PF,2,2,,,即,P,(0,,,1),或,(0,1),时,,PF,1,PF,2,取得最大值,.,1,2,3,4,5,6,7,8,9,10,11,12,13,57/76,*6.(,苏州质检,),设,A,1,,,A,2,为椭圆,1(,a,b,0),左,右顶点,若在椭圆上存在异于,A,1,,,A,2,点,P,,使得,0,,其中,O,为坐标原点,,则椭圆离心率,e,取值范围是,_.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,58/76,A,1,(,a,0),,,A,2,(,a,0),,,设,P,(,x,,,y,),,则,(,x,,,y,),,,(,a,x,,,y,),,,0,,,(,a,x,)(,x,),(,y,)(,y,),0,,,y,2,ax,x,2,0,,,0,x,a,.,将,y,2,ax,x,2,代入,1,,,整理得,(,b,2,a,2,),x,2,a,3,x,a,2,b,2,0,,其在,(0,,,a,),上有解,,令,f,(,x,),(,b,2,a,2,),x,2,a,3,x,a,2,b,2,,,f,(0),a,2,b,2,0,,,f,(,a,),0,,,如图,,1,2,3,4,5,6,7,8,9,10,11,12,13,59/76,(,a,3,),2,4(,b,2,a,2,)(,a,2,b,2,),a,2,(,a,4,4,a,2,b,2,4,b,4,),a,2,(,a,2,2,b,2,),2,0,,,对称轴满足,0 ,a,,即,0 0,,,b,0),焦点在,x,轴上,过点,(2,1),作圆,x,2,y,2,4,切线,切点分别为,A,,,B,,直线,AB,恰好经过椭圆右焦点和上顶点,,则椭圆方程为,_.,答案,解析,设切点坐标为,(,m,,,n,),,则,1,,,即,m,2,n,2,n,2,m,0.,m,2,n,2,4,,,2,m,n,4,0,,即直线,AB,方程为,2,x,y,4,0.,直线,AB,恰好经过椭圆右焦点和上顶点,,2,c,4,0,,,b,4,0,,解得,c,2,,,b,4,,,a,2,b,2,c,2,20,,,椭圆方程为,1.,1,2,3,4,5,6,7,8,9,10,11,12,13,61/76,8.,已知,P,为椭圆,1,上一点,,M,,,N,分别为圆,(,x,3),2,y,2,1,和圆,(,x,3),2,y,2,4,上点,则,PM,PN,最小值为,_.,答案,解析,7,由题意知椭圆两个焦点,F,1,,,F,2,分别是两圆圆心,,且,PF,1,PF,2,10,,,从而,PM,PN,最小值为,PF,1,PF,2,1,2,7.,1,2,3,4,5,6,7,8,9,10,11,12,13,62/76,9.(,连云港,质检,),椭圆,y,2,1,左,右焦点分别为,F,1,,,F,2,,点,P,为椭圆上一动点,若,F,1,PF,2,为钝角,则点,P,横坐标取值范围,是,_.,设椭圆上一点,P,坐标为,(,x,,,y,),,,F,1,PF,2,为钝角,,0,,即,x,2,3,y,2,b,0),左顶点,A,(,a,,,0),作直线,l,交,y,轴于点,P,,交椭圆于点,Q,,若,AOP,是等腰三角形,且,,则椭圆离心率,为,_.,答案,解析,AOP,是等腰三角形,,A,(,a,0),,,P,(0,,,a,).,设,Q,(,x,0,,,y,0,),,,,,(,x,0,,,y,0,a,),2(,a,x,0,,,y,0,).,代入椭圆方程化简,可得,,,1,2,3,4,5,6,7,8,9,10,11,12,13,64/76,11.(,南京模拟,),如图,椭圆,C,:,1(,a,b,0),右焦点为,F,,右顶点,上顶点分别为,A,,,B,,且,AB,BF,.,(1),求椭圆,C,离心率;,解答,由已知,AB,BF,,,即,,,4,a,2,4,b,2,5,a,2,,,4,a,2,4(,a,2,c,2,),5,a,2,,,1,2,3,4,5,6,7,8,9,10,11,12,13,65/76,(2),若斜率为,2,直线,l,过点,(0,2),,且,l,交椭圆,C,于,P,,,Q,两点,,OP,OQ,,求直线,l,方程及椭圆,C,方程,.,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,66/76,设,P,(,x,1,,,y,1,),,,Q,(,x,2,,,y,2,),,,直线,l,方程为,y,2,2(,x,0),,即,2,x,y,2,0.,由,(1),知,a,2,4,b,2,,,椭圆,C,:,1.,由,消去,y,,,32,2,16,17(,b,2,4)0,,解得,b,.,得,x,2,4(2,x,2),2,4,b,2,0,,即,17,x,2,32,x,16,4,b,2,0.,1,2,3,4,5,6,7,8,9,10,11,12,13,67/76,即,x,1,x,2,y,1,y,2,0,,,x,1,x,2,(2,x,1,2)(2,x,2,2),0,,,5,x,1,x,2,4(,x,1,x,2,),4,0.,解得,b,1,,满足,b,.,椭圆,C,方程为,y,2,1.,1,2,3,4,5,6,7,8,9,10,11,12,13,68/76,12.(,安徽,),设椭圆,E,方程为,1(,a,b,0),,点,O,为坐标原点,点,A,坐标为,(,a,0),,点,B,坐标为,(0,,,b,),,点,M,在线段,AB,上,满足,BM,2,MA,,直线,OM,斜率为,.,(1),求,E,离心率,e,;,解答,由题设条件知,点,M,坐标为,,,1,2,3,4,5,6,7,8,9,10,11,12,13,69/76,(2),设点,C,坐标为,(0,,,b,),,,N,为线段,AC,中点,点,N,关于直线,AB,对称点纵坐标为,,求,E,方程,.,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,70/76,由题设条件和,(1),计算结果可得,直线,AB,方程为,1,,,点,N,坐标为,.,设点,N,关于直线,AB,对称点,S,坐标为,,,则线段,NS,中点,T,坐标为,.,又点,T,在直线,AB,上,且,k,NS,k,AB,1,,,1,2,3,4,5,6,7,8,9,10,11,12,13,71/76,从而有,解得,b,3.,1,2,3,4,5,6,7,8,9,10,11,12,13,72/76,13.,已知椭圆,1(,a,b,0),左焦点为,F,,右顶点为,A,,上顶点为,B,,,O,为坐标原点,,M,为椭圆上任意一点,.,过,F,,,B,,,A,三点圆圆心坐标为,(,p,,,q,).,(1),当,p,q,0,时,求椭圆离心率取值范围;,解答,由题意,AF,,,AB,中垂线方程分别为,所以,p,q,0,,,整理得,ab,bc,b,2,ac,0,,即,(,a,b,)(,b,c,),0,,,所以,b,c,,于是,b,2,c,2,,即,a,2,b,2,c,2,2,c,2,.,设椭圆半焦距为,c,.,于是圆心坐标为,1,2,3,4,5,6,7,8,9,10,11,12,13,73/76,(2),若点,D,(,b,1,0),,在,(1),条件下,当椭圆离心率最小时,,最小值为,,求椭圆方程,.,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,74/76,此时椭圆方程为,1,,,设,M,(,x,,,y,),,则,,,1,2,3,4,5,6,7,8,9,10,11,12,13,75/76,解得,c,,不合题意,舍去,.,总而言之,椭圆方程为,1.,1,2,3,4,5,6,7,8,9,10,11,12,13,76/76,
展开阅读全文