1、北师大九年级总复习测试题 一、 选一选(每小题4分,共40分)1已知a=2-2,b=(,c=(-1)3,则它们之间的大小关系是【 】(A)abc (B)bac (C)cab (D)bca2. 在ABC中,C=90,如果tanA,那么sinB的值等于【 】(A) (B) (C) (D) 3.如果关于x的一元二次方程的两根分别为3、1,那么这个一元二次方程是【 】(A) (B) (C) (D) 4.如图1,在ABC中,ABAC5,D是BC上的点,DEAB,交AC于点E,DFAC交AB于点F,那么四边形AFDE的周长是【 】(A)20 (B) 15 (C)10 (D)5 图1 图25.图2是某报纸公
2、布的我国“九五”期间国内生产总值的统计图那么“九五”期间我国国内生产总值平均每年比上一年增长【 】 (A) 0.575万亿元(B)0.46万亿元(C) 9.725万亿元(D) 7.78万亿元6天安门广场的面积约为44万平方米,请你估计一下,它的百万分之一大约相当于【 】(A)教室地面的面积 (B)黑板面的面积 (C)课桌面的面积 (D)铅笔盒盒面的面积7一个圆柱的侧面展开图是一个面积为4平方单位的矩形,那么这个圆柱的母线长和底面半径之间的函数关系是【 】(A)正比例函数 (B)反比例函数 (C)一次函数 (D)二次函数8如图3,O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长为
3、整数,则满足条件的点P有【 】 (A)2个 (B)3个 (C)4个 (D)5个DCBAOM 图3 图4 图59将抛物线向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是【 】(A) (B) (C) (D)10设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只则从中任意取1只,是二等品的概率等于【 】(A)(B)(C)(D)二、填一填(每小题4分,共40分)1如图4,菱形ABCD中,AB=2,BAD=60,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是 2当ab3,xy1时,代数式的值等于 3抛物线与x轴的正半轴交于A,B两点,与y轴交于C点,且线段A
4、B的长为1,ABC的面积为1,则b的值是 .4如图5,O直径CD与弦AB(非直径)交于点M,添加一个条件:_,就可得到点M是AB的中点.5.如图6,河对岸有古塔AB,小敏在C处测得塔顶A的仰角为,向塔s米到达D,在D处测得塔顶A的仰角为,则塔高是_米 图6 图76.如图7,已知AD30,点B,C是AD上的三等分点,分别以AB,BC,CD为直径作圆,圆心分别为E,F,G,AP切G于点P交F于M,N,则弦MN的长是 _7.如图8在直角坐标系中有两点A(40)、B(0,2),如果点C在轴x上(C与A不重合),当点C的坐标为 或 时,使得由点B、O、C组成的三角形与AOB相似(至少找出两个满足条件的点
5、的坐标)8.用火柴棒按如图9的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律搭下去,搭n个三角形需要S支火柴棒,那么S关于n的函数关系式是 (n为正整数) 程前你祝似锦 图8 图9 图109.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如图10,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦” 表示右面, “程”表示下面.则“祝”、“你”、 “前”分别表示正方体的_.10根据指令s,A(s0,0AAB,设ADB=,已知sin是方程的一个实根,点E,F分别是BC,DC上的点,EC+CF=
6、8,设BE = x,AEF的面积等于y(1)求出y与x之间的函数关系式;(2)当E,F两点在什么位置时,y有最小值?并求出这个最小值参考答案:一、1.B 2.B 3.B 4.C 5.A 6.C 7.B 8.A 9.A 10.C二、1.;2. 8 ;3.-3; 4.ABCD; 5. ;6. 8;7.(-1,0),(1,0);8.S=2n+1 ;9.后面,上面,左面;10. (2,2) (.三、1. (1) P=-30Q+90(2)当P0时,即-30Q+900,Q3,定价超过3元时便无人订阅.(3)设先手总额为W,则W=PQ=(-30Q+90)Q=-30Q2+90Q,因为-300,所以当Q=2.(
7、1)停在“铅笔”的频率0.680.740.680.690.7050.701(2)当n很大时,停在“铅笔”的频率将会接近0.7(在0.70.01范围内都可以)(3)获得铅笔的概率是0.7(在0.70.01范围内都可以)(4)圆心角的度数为0.7360=2523. 解:如图1,连结OC交AB于点D 因为CA,CB分别是O的切线,所以CA=CB,OC平分ACB,所以OCAB 因为AB=6,所以BD=3在RtOBD中,OB= ,所以BOD=60.4.提示:作ODAB于D点,可求OD=3013.36AB,所以取sina1=,则有AD=16,AB=12,设BE=x,则有EC=16-x,FC=8-EC=x-8,DF=12-FC=20-x,则AEF的面积y=1612- (8x16) (2)y=当x=10时,即BE=10,CF=2时,y有最小值为46.