资源描述
1、如图,已知抛物线(a≠0)经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点,在轴正半轴上,连结.
(1)求该抛物线的解析式;
(2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形?
(3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿和运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,四边形的面积最小?并求出最小值及此时的长.
x
y
M
C
D
P
Q
O
A
B
A
C
B
P
Q
E
D
图16
2、如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t = 2时,AP = ,点Q到AC的距离是 ;
(2)在点P从C向A运动的过程中,求△APQ的面积S与
t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成
为直角梯形?若能,求t的值.若不能,请说明理由;
(4)当DE经过点C 时,请直接写出t的值.
3、如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为。
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。
4、如图,在梯形中,点是的中点,是等边三角形.
(1)求证:梯形是等腰梯形;
(2)动点、分别在线段和上运动,且保持不变.设求与的函数关系式;
(3)在(2)中:①当动点、运动到何处时,以点、和点、、、中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当取最小值时,判断的形状,并说明理由.
A
D
C
B
P
M
Q
60°
5、已知抛物线()与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.
(1)填空:试用含的代数式分别表示点与的坐标,则;
(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;
(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.
第(2)题
x
y
B
C
O
D
A
M
N
N′
x
y
B
C
O
A
M
N
备用图
(第24题)
6、已知二次函数()的图象经过点,,,直线()与轴交于点.
(1)求二次函数的解析式;
(2)在直线()上有一点(点在第四象限),使得为顶点的三角形与以为顶点的三角形相似,求点坐标(用含的代数式表示);
(3)在(2)成立的条件下,抛物线上是否存在一点,使得四边形为平行四边形?若存在,请求出的值及四边形的面积;若不存在,请说明理由.
y
x
O
7、直线与坐标轴分别交于、两点,、的长分别是方程的两根(),动点从点出发,沿路线→→以每秒1个单位长度的速度运动,到达点时运动停止.
(1)直接写出、两点的坐标;
(2)设点的运动时间为(秒),的面积为,求与之间的函数关系式(不必写出自变量的取值范围);
(3)当时,直接写出点的坐标,此时,在坐标轴上是否存在点,使以、、、为顶点的四边形是梯形?若存在,请直接写出点的坐标;若不存在,请说明理由.
8、已知:如图所示,关于x的抛物线y=ax2+x+c(a≠0)与轴交于点A(-2,0)、点B(6,0),与y轴交于点C.
(1)求出此抛物线的解析式,并写出顶点坐标;
(2)在抛物线上有一点D,使四边形ABCD为等腰梯形,写出点D的坐标,并求出直线AD的解析式;
B
A
O
C
y
x
(第26题图)
(3)在(2)中的直线AD交抛物线的对称轴于点M,抛物线上有一动点P,X轴上有一动点Q.是否存在以A、M、P、Q为顶点的平行四边形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.
9、如图12,在直角梯形OABC中, OA∥CB,A、B两点的坐标分别为A(15,0),B(10,12),动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q也同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,射线QE交轴于点F.设动点P、Q运动时间为t(单位:秒).
(1)当t为何值时,四边形PABQ是等腰梯形,请写出推理过程;
(2)当t=2秒时,求梯形OFBC的面积;
(3)当t为何值时,△PQF是等腰三角形?请写出推理过程.
10、如图11,已知抛物线()与轴的一个交点为,与y轴的负半轴交于点C,顶点为D.
(1)直接写出抛物线的对称轴,及抛物线与轴的另一个交点A的坐标;
(2)以AD为直径的圆经过点C.
①求抛物线的解析式;
②点在抛物线的对称轴上,点在抛物线上,且以四点为顶点的四边形为平行四边形,求点的坐标.
O
x
y
A
B
C
D
图11
11、如图,在平面直角坐标系中,若、的长是关于的一元二次方程的两个根,且
(1)求的值.
(2)若为轴上的点,且求经过、两点的直线的解析式,并判断与是否相似?
(3)若点在平面直角坐标系内,则在直线上是否存在点使以、、、为顶点的四边形为菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.
x
y
A
D
B
O
C
28题图
12、已知:等边三角形的边长为4厘米,长为1厘米的线段在的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点与点重合,点到达点时运动终止),过点分别作边的垂线,与的其它边交于两点,线段运动的时间为秒.
(1)线段在运动的过程中,为何值时,四边形恰为矩形?并求出该矩形的面积;
(2)线段在运动的过程中,四边形的面积为,运动的时间为.求四边形的面积随运动时间变化的函数关系式,并写出自变量的取值范围.
C
P
Q
B
A
M
N
13、已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
展开阅读全文