资源描述
2023-2024学年九上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,二次函数的最大值为3,一元二次方程有实数根,则的取值范围是
A.m≥3 B.m≥-3 C.m≤3 D.m≤-3
2.如图,中,将绕点逆时针旋转后得到,点经过的路径为则图中涂色部分的面积为( )
A. B. C. D.
3.若整数使关于的不等式组至少有4个整数解,且使关于的分式方程有整数解,那么所有满足条件的的和是( )
A. B. C. D.
4.如图,A,B,C是⊙O上的三点,∠BAC=55°,则∠BOC的度数为( )
A.100° B.110° C.125° D.130°
5.如图,小颖周末到图书馆走到十字路口处,记不清前面哪条路通往图书馆,那么她能一次选对路的概率是( )
A. B. C. D.0
6.二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是( )
……
-3
-2
-1
0
1
……
……
-17
-17
-15
-11
-5
……
A. B. C. D.
7.一元二次方程的解是( )
A.x1=2,x2=-2 B.x=-2 C.x=2 D.x1=2,x2=0
8.如图,的半径为,圆心到弦的距离为,则的长为( )
A. B. C. D.
9.下列事件是必然事件的是( )
A.任意购买一张电影票,座号是“7排8号” B.射击运动员射击一次,恰好命中靶心
C.抛掷一枚图钉,钉尖触地 D.13名同学中,至少2人出生的月份相同
10.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是( )
A. B. C. D.
二、填空题(每小题3分,共24分)
11.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.
12.已知:,则 的值是_______.
13.如图,在直角坐标系中,点,点,过点的直线垂直于线段,点是直线上在第一象限内的一动点,过点作轴,垂足为,把沿翻折,使点落在点处,若以,,为顶点的三角形与△ABP相似,则满足此条件的点的坐标为__________.
14.已知以线段AC为对角线的四边形ABCD(它的四个顶点A,B,C,D按顺时针方向排列)中,AB=BC=CD,∠ABC=100°,∠CAD=40°,则∠BCD的度数为____________.
15.如图,是的直径,点、在上,连结、、、,若,,则的度数为________.
16.已知二次函数y=-x2+2x+1,若y随x增大而增大,则x的取值范围是____.
17.如图,在△ABC中,D、E分别是边AB、AC上的两点,且DEBC,BD=AE,若AB=12cm,AC=24cm,则AE=_____.
18.从﹣3,﹣2,﹣1,0,1,2这6个数中任意取出一个数记作k,则既能使函数y=的图象经过第一、第三象限,又能使关于x的一元二次方程x2﹣kx+1=0有实数根的概率为_____.
三、解答题(共66分)
19.(10分)已知:如图,是正方形的对角线上的两点,且.
求证:四边形是菱形.
20.(6分)先化简,再求值:(1+)÷,其中a=1.
21.(6分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.
(1)若某天该商品每件降价3元,当天可获利多少元?
(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);
(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
22.(8分)已知=,求的值.
23.(8分)在校园文化艺术节中,九年级(1)班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.
(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,恰好选到男生是 事件(填随机或必然),选到男生的概率是 .
(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图的方法,求刚好是一男生和一女生的概率.
24.(8分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
25.(10分)在平面直角坐标系中,抛物线与轴的两个交点分别是、,为顶点.
(1)求、的值和顶点的坐标;
(2)在轴上是否存在点,使得是以为斜边的直角三角形?若存在,求出点的坐标;若不存在,请说明理由.
26.(10分)某校为了解每天的用电情况,抽查了该校某月10天的用电量,统计如下(单位:度):
用电量
90
93
102
113
114
120
天数
1
1
2
3
1
2
(1)该校这10天用电量的众数是 度,中位数是 度;
(2)估计该校这个月的用电量(用30天计算).
参考答案
一、选择题(每小题3分,共30分)
1、C
【解析】方程ax2+bx+c-m=0有实数相当于y=ax2+bx+c(a≠0)平移m个单位与x轴有交点,结合图象可得出m的范围.
【详解】方程ax2+bx+c-m=0有实数根,相当于y=ax2+bx+c(a≠0)平移m个单位与x轴有交点,
又∵图象最高点y=3,
∴二次函数最多可以向下平移三个单位,
∴m≤3,
故选:C.
本题主要考查二次函数图象与一元二次方程的关系,掌握二次函数图象与x轴交点的个数与一元二次方程根的个数的关系是解题的关键.
2、A
【分析】先根据勾股定理得到AB,再根据扇形的面积公式计算出,由旋转的性质得到Rt△ADE≌Rt△ACB,于是.
【详解】∵∠ACB=90°,AC=BC=1,
∴,
∴,
又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
∴Rt△ADE≌Rt△ACB,
∴.
故选:A
本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键.
3、A
【分析】根据不等式组求出a的范围,然后再根据分式方程求出a的取值范围,综合考虑确定a的值,再求和即可.
【详解】解不等式组得:
∵至少有4个整数解
∴,解得
分式方程去分母得
解得:
∵分式方程有整数解,a为整数
∴、、、
∴、、、、、、、
∵,
∴
又∵
∴或
满足条件的的和是-13,
故选A.
本题考查了不等式组与分式方程,解题的关键是解分式方程时需要舍去增根的情况.
4、B
【分析】由点A、B、C是⊙O上的三点,∠BAC=40°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.
【详解】解:∵∠BAC=55°,
∴∠BOC=2∠BAC=110°.(圆周角定理)
故选:B.
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半
5、B
【分析】在通往图书馆的路口有3条路,一次只能选一条路,则答案可解.
【详解】在通往图书馆的路口有3条路,一次只能选一条路,她能一次选对路的概率是
故选:B.
本题主要考查随机事件的概念,掌握随机事件概率的求法是解题的关键.
6、B
【分析】当和时,函数值相等,所以对称轴为
【详解】解:根据题意得,当和时,函数值相等,
所以二次函数图象的对称轴为直线
故选B
本题考查了二次函数的性质.
7、A
【分析】首先将原方程移项可得,据此进一步利用直接开平方法求解即可.
【详解】原方程移项可得:,
解得:,,
故选:A.
本题主要考查了直接开平方法解一元二次方程,熟练掌握相关方法是解题关键.
8、D
【分析】过点O作OC⊥AB于C,连接OA,根据勾股定理求出AC长,根据垂径定理得出AB=2CA,代入求出即可.
【详解】过点O作OC⊥AB于C,连接OA,
则OC=6,OA=10,由勾股定理得:
,
∵OC⊥AB,OC过圆心O,
∴AB=2AC=16,
故选D.
本题主要考查了勾股定理和垂径定理等知识点的应用,正确作出辅助线是关键.
9、D
【分析】根据必然事件的定义即可得出答案.
【详解】ABC均为随机事件,D是必然事件,故答案选择D.
本题考查的是必然事件的定义:一定会发生的事情.
10、A
【分析】如图,连接DP,BD,作DH⊥BC于H.当D、P、M共线时,P′B+P′M=DM的值最小,利用勾股定理求出DM,再利用平行线的性质即可解决问题.
【详解】如图,连接DP,BD,作DH⊥BC于H.
∵四边形ABCD是菱形,
∴AC⊥BD,B、D关于AC对称,
∴PB+PM=PD+PM,
∴当D、P、M共线时,P′B+P′M=DM的值最小,
∵CM=BC=2,
∵∠ABC=120°,
∴∠DBC=∠ABD=60°,
∴△DBC是等边三角形,
∵BC=6,
∴CM=2,HM=1,DH=,
在Rt△DMH中,DM===,
∵CM∥AD,
∴==,
∴P′M= DM=.
故选A.
本题考查轴对称﹣最短问题、菱形的性质、等边三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.
二、填空题(每小题3分,共24分)
11、6
【解析】符合条件的最多情况为:
即最多为2+2+2=6
12、
【分析】根据已知等式设a=2k,b=3k,代入式子可求出答案.
【详解】解:由,可设a=2k,b=3k,(k≠0),
故:,
故答案:.
此题主要考查比例的性质,a、b都用k表示是解题的关键.
13、或
【分析】求出直线l的解析式,证出△AOB∽△PCA,得出,设AC=m(m>0),则PC=2m,根据△PCA≌△PDA,得出 ,当△PAD∽△PBA时,根据,,得出m=2,从而求出P点的坐标为(4,4)、(0,-4),若△PAD∽△BPA,得出,求出,从而得出,求出,即可得出P点的坐标为.
【详解】∵点A(2,0),点B(0,1),
∴直线AB的解析式为y=-x+1
∵直线l过点A(4,0),且l⊥AB,
∴直线l的解析式为;y=2x-4,∠BAO+∠PAC=90°,
∵PC⊥x轴,
∴∠PAC+∠APC=90°,
∴∠BAO=∠APC,
∵∠AOB=∠ACP,
∴△AOB∽△PCA,
∴,
∴,
设AC=m(m>0),则PC=2m,
∵△PCA≌△PDA,
∴AC=AD,PC=PD,
∴,
如图1:当△PAD∽△PBA时,
则,
则,
∵AB=,
∴AP=2,
∴,
∴m=±2,(负失去)
∴m=2,
当m=2时,PC=4,OC=4,P点的坐标为(4,4),
如图2,若△PAD∽△BPA,
则,
∴,
则,
∴m=±,(负舍去)
∴m=,
当m=时,PC=1,OC=,
∴P点的坐标为(,1),
故答案为:P(4,4),P(,1).
此题考查了一次函数的综合,用到的知识点是相似三角形和全等三角形的判定与性质、勾股定理、一次函数等,关键是根据题意画出图形,注意点P在第一象限有两个点.
14、80°或100°
【解析】作出图形,证明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,分类讨论可得解.
【详解】∵AB=BC,∠ABC=100°,
∴∠1=∠2=∠CAD=40°,
∴AD∥BC.点D的位置有两种情况:
如图①,过点C分别作CE⊥AB于E,CF⊥AD于F,
∵∠1=∠CAD,
∴CE=CF,
在Rt△ACE与Rt△ACF中,,
∴Rt△ACE≌Rt△ACF,
∴∠ACE=∠ACF.
在Rt△BCE与Rt△DCF中,,
∴Rt△BCE≌Rt△DCF,
∴∠BCE=∠DCF,
∴∠ACD=∠2=40°,
∴∠BCD=80°;
如图②,
∵AD′∥BC,AB=CD′,
∴四边形ABCD′是等腰梯形,
∴∠BCD′=∠ABC=100°,
综上所述,∠BCD=80°或100°,
故答案为80°或100°.
本题考查了全等三角形的判定与性质,等腰梯形的判定与性质,本题关键是证明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,同时注意分类思想的应用.
15、°
【分析】先由直径所对的圆周角为90°,可得:∠ADB=90°,根据同圆或等圆中,弦相等得到弧相等得到圆周角相等,得到∠A的度数,根据直角三角形的性质得到∠ABD的度数,即可得出结论.
【详解】∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠A+∠ABD=90°.
∵BD=CD,
∴弧BD=弧CD,
∴∠A=∠DBC=20°,
∴∠ABD=90° -20°=70°,
∴∠ABC=∠ABD-∠DBC=70°-20°=50°.
故答案为:50°.
本题考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,直径所对的圆周角为90°.
16、x≤1
【解析】试题解析:二次函数的对称轴为:
随增大而增大时,的取值范围是
故答案为
17、1cm
【分析】由题意直接根据平行线分线段成比例定理列出比例式,进行代入计算即可得到答案.
【详解】解:∵DE//BC,
∴,即,
解得:AE=1.
故答案为:1cm.
本题考查的是平行线分线段成比例定理,由题意灵活运用定理、找准对应关系是解题的关键.
18、.
【分析】确定使函数的图象经过第一、三象限的k的值,然后确定使方程有实数根的k值,找到同时满足两个条件的k的值即可.
【详解】解:这6个数中能使函数y=的图象经过第一、第三象限的有1,2这2个数,
∵关于x的一元二次方程x2﹣kx+1=0有实数根,
∴k2﹣4≥0,
解得k≤﹣2或k≥2,
能满足这一条件的数是:﹣3、﹣2、2这3个数,
∴能同时满足这两个条件的只有2这个数,
∴此概率为,
故答案为:.
三、解答题(共66分)
19、见解析
【解析】连接AC,交BD于O,由正方形的性质可得OA=OC,OB=OD,AC⊥BD根据BE=DF可得OE=OF,由对角线互相垂直平分的四边形是菱形即可判定,
【详解】∵四边形ABCD是正方形,
∴OD=OB,OA=OC,BD⊥AC,
∵BE=DF,
∴DE=BF,
∴OE=OF,
∵OA=OC,AC⊥EF,OE=OF,
∴四边形AECF为菱形.
本题考查了正方形对角线互相垂直平分的性质,考查了菱形的判定,对角线互相垂直且互相平分的四边形是菱形,熟练掌握菱形的判定方法是解题关键.
20、化简为,值为
【分析】先将分式化简,再把值代入计算即可.
【详解】原式=
=,
当a=1时,
原式=.
本题考查分式的化简求值,关键在于熟练掌握化简方法.
21、(1)若某天该商品每件降价3元,当天可获利1692元;
(2)2x;50﹣x.
(3)每件商品降价1元时,商场日盈利可达到2000元.
【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;
(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;
(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.
【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).
答:若某天该商品每件降价3元,当天可获利1692元.
(2)∵每件商品每降价1元,商场平均每天可多售出2件,
∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.
故答案为2x;50-x.
(3)根据题意,得:(50-x)×(30+2x)=2000,
整理,得:x2-35x+10=0,
解得:x1=10,x2=1,
∵商城要尽快减少库存,
∴x=1.
答:每件商品降价1元时,商场日盈利可达到2000元.
考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).
22、-7
【分析】根据等式的性质可得=b,再根据分式的性质可得答案.
【详解】解:由=,得=b.
∴
本题考查了比例的性质和分式性质,利用等式性质求得=b是解题关键.
23、(1)随机,;(2)树状图见解析,
【分析】(1)根据随机事件的概念可知该事件为随机事件,选到男生的概率用男生的人数除以总人数即可;
(2)用树状图列出所有情况,找到一男一女的情况,用一男一女的情况数除以总数即可求出概率.
【详解】解:(1)随机,
男生共3名,总人数为7名,所以选到男生的概率为
故答案为随机,
(2)树状图如图所示
由图可知,共有12种等可能结果,其中刚好是一男生一女生的结果数为6,
∴.
本题主要考查树状图或列表法求随机事件的概率,掌握树状图或列表法是解题的关键.
24、(1);(2)200;(3)150元, 最高利润为5000元,
【分析】(1)总利润=每台的利润销售台数,根据公式即可列出关系式;
(2)将y=4800代入计算即可得到x的值,取x的较大值;
(3)将(1)的函数关系式配方为顶点式,即可得到答案.
【详解】(1)由题意得: ;
(2)将y=4800代入,
∴,
解得x1=100,x2=200,
要使百姓得到实惠,则降价越多越好,所以x=200,
故每台冰箱降价200元
(3),
每台冰箱降价150元时,商场每天销售这种冰箱的利润最高,最高利润为5000元
此题考查二次函数的实际应用,熟记销售问题的售价、进价、利润三者之间的关系是解题的关键.
25、(1),,(-1,4);(2)在y轴上存在点D (0,3)或D (0,1),使△ACD是以AC为斜边的直角三角形
【分析】(1)把A(-3,0),B(1,0)代入解方程组即可得到结论;
(2)过C作CE⊥y轴于E,根据函数的解析式求得C(-1,4),得到CE=1,OE=4,设,得到,根据相似三角形的性质即可得到结论.
【详解】(1)把A(−3,0)、B(1,0)分别代入,
,
解得:,,
则该抛物线的解析式为:,
∵,
所以顶点的坐标为(,);
故答案为:,,顶点的坐标为(,);
(2)如图1,过点作⊥轴于点,
假设在轴上存在满足条件的点,
设(0,),则,
∵,
∴,,,,
由∠90得∠1∠290,
又∵∠2∠390,
∴∠3∠1,
又∵∠CED∠DOA90,
∴△∽△,
∴,
则,
变形得,
解得,.
综合上述:在y轴上存在点(0,3)或(0,1),使△ACD是以AC为斜边的直角三角形.
本题考查了二次函数综合题,待定系数法求函数的解析式,相似三角形的判定和性质,正确的理解题意是解题的关键.
26、(1)113;113;(2)3240度.
【分析】(1)分别利用众数、中位数的定义求解即可;
(2)根据平均数的计算方法计算出平均用电量,再乘以总用电天数即可得解.
【详解】解:(1)113度出现了3此,出现的次数最多,故众数为113度;
将数据按从小到大的顺序排列,共10个数据,位于第5,6的数均为113,故中位数为113度;
(2)(度).
答:估计该校该月的用电量为3240度.
本题考查的知识点是中位数、众数的概念定义以及算数平均线的计算方法,属于基础题目,易于理解掌握.
展开阅读全文