收藏 分销(赏)

高中数学必修一函数及其性质典型例题.pdf

上传人:w****g 文档编号:1062521 上传时间:2024-04-12 格式:PDF 页数:4 大小:308.21KB
下载 相关 举报
高中数学必修一函数及其性质典型例题.pdf_第1页
第1页 / 共4页
高中数学必修一函数及其性质典型例题.pdf_第2页
第2页 / 共4页
高中数学必修一函数及其性质典型例题.pdf_第3页
第3页 / 共4页
高中数学必修一函数及其性质典型例题.pdf_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1 (每日一练每日一练)高中数学必修一函数及其性质典型例题高中数学必修一函数及其性质典型例题 单选题 1、定义在的奇函数()满足(+4)=(),且当 (0,2)时,()=(1)2,则函数()在区间6,4上的零点个数为()A10B11C12D13 答案:B 解析:由奇函数的性质周期函数的性质结合函数在(0,2)上的解析式,确定函数的零点.当 (0,2)时,()=(1)2,又函数()为奇函数,()=()当 (2,0)时,()=(+1)2,(0)=0,(2)=(2)(+4)=()函数()是周期函数,且周期为 4,(2)=(2),(2)=(2)=0 2 函数()在2,2)的零点有 4 个,即2,1,0

2、,1,函数()在6,2)的零点有 4 个,又函数()在2,4的零点有 2,3,4,函数()在区间6,4上的零点个数为 11 个,故选:B.2、已知(2+1)=42,则(3)=A36B16C100D8 答案:B 解析:设 2x+1t,则x=12,从而f(t)(t1)2,由此能求出f(3)f(2x+1)4x2,设 2x+1t,则x=12,f(t)4(12)2(t1)2,f(3)(31)216 故选B 小提示:本题考查函数值的求法,考查解析式求法,是基础题,解题时要认真审题,注意函数性质的合理运用 3、已知奇函数()在上是增函数,()=()若=(log25.1),=(20.5),=(3),则,的大小

3、关系为()A B C D 0时,()0,从而()=()是上的偶函数,且在0,+)上是增函数,=(log25.1)=(log25.1),20.5 2,又4 5.1 8,则2 log25.1 3,所以即0 20.5 log25.1 3,(20.5)(log25.1)(3),所以 .故选:C 4、设函数()定义在实数集上,它的图像关于直线=1对称,且当 1时,()=3 1,则有()A(13)(32)(23)B(23)(32)(13)C(23)(13)(32)D(32)(23)(13)答案:B 解析:根据单调性与对称性得离对称轴越近的点,函数值越小,由此可比较大小 由题意可得,函数()在1,+)上是增

4、函数,再根据函数的图象关于直线=1对称,可得函数在(,1上是减函数,故离直线=1越近的点,函数值越小,|23 1|=13,|32 1|=12,|13 1|=23,(23)(32)(13),故选:B.小提示:本题考查函数的单调性与对称性,利用单调性比较函数值的大小属于基础题 5、已知函数()为偶函数,当 0的解析式,根据条件求()=2的点,再求点到直线的距离的最小值.当 0,0,因为函数是偶函数,所以()=()=ln 3,设点(2,2),(2)=12 3=2,解得:2=1,2=3,此时点到直线=2+1的距离2=|231|5=25,因为2 1,所以曲线=()上的点到直线=2+1的最小距离为2=255.故选:B

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服