收藏 分销(赏)

专题七:函数与导数问题进阶(教师版)自己总结.doc

上传人:丰**** 文档编号:10602946 上传时间:2025-06-04 格式:DOC 页数:20 大小:1.74MB
下载 相关 举报
专题七:函数与导数问题进阶(教师版)自己总结.doc_第1页
第1页 / 共20页
专题七:函数与导数问题进阶(教师版)自己总结.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述
函数与导数问题进阶(教师版) 常见题型及解法 1. 常见题型 一、 小题: 1. 函数的图象 2. 函数的性质(单调性、奇偶性、周期性、对称性); 3. 分段函数求函数值; 4. 函数的定义域、值域(最值); 5. 函数的零点; 6. 抽象函数; 7. 定积分运算(求面积) 二、大题: 1. 求曲线在某点处的切线的方程; 2. 求函数的解析式 3. 讨论函数的单调性,求单调区间; 4. 求函数的极值点和极值; 5. 求函数的最值或值域; 6. 求参数的取值范围 7. 证明不等式; 8. 函数应用问题 2. 在解题中常用的有关结论(需要熟记): (1)曲线在处的切线的斜率等于,且切线方程为 。 (2)若可导函数在 处取得极值,则。反之,不成立。 (3)对于可导函数,不等式的解集决定函数的递增(减)区间。 (4)函数在区间I上递增(减)的充要条件是:恒成立( 不恒为0). (5)函数(非常量函数)在区间I上不单调等价于在区间I上有极值,则可等价转化为方程在区间I上有实根且为非二重根。(若为二次函数且I=R,则有)。 (6) 在区间I上无极值等价于在区间在上是单调函数,进而得到或在I上恒成立 (7)若,恒成立,则; 若,恒成立,则 (8)若,使得,则;若,使得,则. (9)设与的定义域的交集为D,若D 恒成立,则有 . (10)若对、 ,恒成立,则. 若对,,使得,则. 若对,,使得,则. (11)已知在区间上的值域为A,,在区间上值域为B, 若对,,使得=成立,则。 (12)若三次函数f(x)有三个零点,则方程有两个不等实根,且极大值大于0,极小值小于0. (13)证题中常用的不等式: ① ② ③ ④ ⑤ ⑥ 3. 解题方法规律总结 1. 关于函数单调性的讨论:大多数函数的导函数都可以转化为一个二次函数,因此,讨论函数单调性的问题,又往往转化为二次函数在所给区间上的符号问题。要结合函数图象,考虑判别式、对称轴、区间端点函数值的符号等因素。 2. 已知函数(含参数)在某区间上单调,求参数的取值范围,有三种方法: ①子区间法;②分离参数法;③构造函数法。 3. 注意分离参数法的运用:含参数的不等式恒成立问题,含参数的不等式在某区间上有解,含参数的方程在某区间上有实根(包括根的个数)等问题,都可以考虑用分离参数法,前者是求函数的最值,后者是求函数的值域。 4. 关于不等式的证明:通常是构造函数,考察函数的单调性和最值。有时要借助上一问的有关单调性或所求的最值的结论,对其中的参数或变量适当赋值就可得到所要证的不等式。对于含有正整数n的带省略号的不定式的证明,先观察通项,联想基本不定式(上述结论中的13),确定要证明的函数不定式(往往与所给的函数及上一问所得到的结论有关),再对自变量x赋值,令x分别等于1、2、…….、n,把这些不定式累加,可得要证的不定式。) 5. 关于方程的根的个数问题:一般是构造函数,有两种形式,一是参数含在函数式中,二是参数被分离,无论哪种形式,都需要研究函数在所给区间上的单调性、极值、最值以及区间端点的函数值,结合函数图象, 确立所满足的条件,再求参数或其取值范围。 小题讲解: 【例1】(山东高考题)已知定义在R上的奇函数,满足,且在区间[0,2]上是增函数,若方程在区间上有四个不同的根,则 【答案】 -8 -8 -6 -4 -2 0 2 4 6 8 y x f(x)=m (m>0) 【解析】因为定义在R上的奇函数,满足,所以,所以, 由为奇函数,所以函数图象关于直线对称且,由知,所以函数是以8为周期的周期函数,又因为在区间[0,2]上 是增函数,所以在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0) 在区间上有四个不同的根,不妨设,由对称性知,.所以. 【点评】本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题. 【例2】若是方程的解,是 的解,则的值为( ) A. Error! No bookmark name given. B. C.3 D. 【解析】作出的图象,交点横坐标为,而. 【答案】C 【点评】该题考查了指数函数、对数函数的图象及性质.综合了函数的图象、方程的解及曲线的交点等问题.指数函数、对数函数是两类重要的基本初等函数, 高考中以它们为载体的函数综合题既考查双基, 又考查对蕴含其中的函数思想、等价转化、分类讨论等思想方法的理解与运用. 【例3】若函数有两个零点,则实数的取值范围是 . 【解析】设函数和函数,则函数 有两个零点, 就是函数与函数有两个交点,由图象可知:当时两函数只有一个交点,不符合,当时,因为函数的图象过点(0,1),而直线所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a的取值范围是. 【答案】 【点评】本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象解答.体现了对分类讨论思想的考查,分类讨论时,要注意该分类时才分类,务必要全面. 【例4】已知偶函数在区间单调递增,则满足<的x 取值范围是( ) (A)(,) (B) [,) (C)(,) (D) [,) 【解析】由于f(x)是偶函数,故f(x)=f(|x|), ∴得f(|2x-1|)<f(),再根据f(x)的单调性,得|2x-1|<,解得<x<. 【答案】B 【点评】该题的关键是将含有函数符号的不等式转化为普通的不等式,体现的对转化思想的考查,同时还综合考查了函数的性质,而该题的转化的依据就是函数的奇偶性和单调性.考题中通过这种形式来考查函数的性质与方程、不等式等的综合不但是一个热点,而且成了一个固定的必考题型. 【例5】某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x10)层,则每平方米的 平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=) 【解析】设楼房每平方米的平均综合费为元,依题意得: 则,令,即,解得. 当时,;当时,, 因此,当时,取得最小值,元. 【答】 为了使楼房每平方米的平均综合费最少,该楼房应建为15层. 【点评】这是一题应用题,利用函数与导数的知识来解决问题.利用导数,求函数的单调性、求函数值域或最值是一种常用的方法. 一、(单调性,用到二阶导数的技巧) 例一、已知函数 ⑴若,求的极大值; ⑵若在定义域内单调递减,求满足此条件的实数k的取值范围. 解:⑴定义域为 令 由 由 即上单调递增,在上单调递减 时,F(x)取得极大值  ⑵的定义域为(0,+∞), 由G (x)在定义域内单调递减知:在(0,+∞)内恒成立 令,则 由 ∵当时为增函数 当时,为减函数 ∴当x = e时,H(x)取最大值 故只需恒成立, 又当时,只有一点x = e使得不影响其单调性 二、交点与根的分布 例二、已知函数. (1)求曲线在点处的切线方程; (2)设,如果过点可作曲线的三条切线,证明:. 解:(1).在点处的切线方程为, 即. (2)如果有一条切线过点,则存在,使. 若过点可作曲线的三条切线, 则方程 有三个相异的实数根. 记 ,则. 当变化时,变化情况如下表: 0 0 0 极大值 极小值 如果过可作曲线三条切线, 即有三个相异的实数根,则即 . 例三、已知,函数(其中) (I)求函数在区间上的最小值; (II)是否存在实数,使曲线在点处的切线与y轴垂直?若存在,求出的值;若不存在,请说明理由。 三、不等式证明 作差证明不等式 1. (2010湖南,最值、作差构造函数) 已知函数. (1)求函数的单调递减区间; (2)若,求证:≤≤x. 解:(1)函数f (x)的定义域为(-1,+∞),, 由 得:,∴x>0,∴f (x)的单调递减区间为(0,+∞). (2)证明:由(1)得x∈(-1,0)时,, 当x∈(0,+∞)时,,且 ∴x>-1时,f (x)≤f (0),∴≤0,≤x 令,则, ∴-1<x<0时,,x>0时,,且 ∴x>-1时,g (x)≥g (0),即≥0 ∴≥,∴x>-1时,≤≤x. 2. (2007湖北20,转换变量,作差构造函数,较容易) 已知定义在正实数集上的函数,,其中.设两曲线,有公共点,且在该点处的切线相同. ⑴用表示,并求的最大值; ⑵求证:当时,. 解:⑴设与在公共点处的切线相同. ,,由题意,. 即由得:,或(舍去). 即有. 令,则.于是 当,即时,; 当,即时,. 故在为增函数,在为减函数, 于是在的最大值为. ⑵设, 则. 故在为减函数,在为增函数, 于是函数在上的最小值是. 故当时,有,即当时,. 变形构造证明不等式 3. 已知函数, (Ⅰ)求的极值 (Ⅱ)若在上恒成立,求的取值范围 (Ⅲ)已知,且,求证 解:(1)∵,令得 ,,为增函数,,,为减函数 ∴有极大值 ……………………4分 (2)欲使<在上恒成立, 只需 在上恒成立 设, ,,为增函数,,,为减函数 ∴时,是最大值 只需,即………8分 (3)∵由(2)可知在上单调增, ,那,同理 相加得 ,∴, 得: . 4. (2010辽宁文21,构造变形,二次) 已知函数. ⑴讨论函数的单调性; K^S*5U.C# ⑵设,证明:对任意,. 解:⑴ f(x)的定义域为(0,+),. 当a≥0时,>0,故f(x)在(0,+)单调增加; 当a≤-1时,<0, 故f(x)在(0,+)单调减少; 当-1<a<0时,令=0,解得x=.当x∈(0, )时, >0; x∈(,+)时,<0, 故f(x)在(0, )单调增加,在(,+)单调减少. ⑵不妨假设x1≥x2.由于a≤-2,故f(x)在(0,+)单调减少. 所以等价于≥4x1-4x2, 即f(x2)+ 4x2≥f(x1)+ 4x1. 令g(x)=f(x)+4x,则+4=. 设,≤-1,对称轴为, 结合图象知≤≤0, 于是≤=≤0. 从而g(x)在(0,+)单调减少,故g(x1) ≤g(x2), 即 f(x1)+ 4x1≤f(x2)+ 4x2,故对任意x1,x2∈(0,+) , 四、不等式恒成立求字母范围 恒成立之最值的直接应用 已知函数。 ⑴求的单调区间; ⑵若对于任意的,都有≤,求的取值范围. 解:⑴,令, 当时,与的情况如下: + 0 0 + 0 所以,的单调递增区间是和:单调递减区间是, 当时,与的情况如下: 0 + 0 0 所以,的单调递减区间是和:单调递减区间是。 ⑵当时,因为,所以不会有 当时,由(Ⅰ)知在上的最大值是, 所以等价于,解 综上:故当时,的取值范围是[,0]. 5. (2008天津理20倒数第3大题,最值的直接应用,第3问带有小的处理技巧) 已知函数,其中. ⑴若曲线在点处切线方程为,求函数的解析式; ⑵讨论函数的单调性; ⑶若对于任意的,不等式在上恒成立,求的取值范围. 解:⑴,由导数的几何意义得,于是. 由切点在直线上可得,解得. 所以函数的解析式为. ⑵. 当时,显然(),这时在,上内是增函数. 当时,令,解得. 当变化时,,的变化情况如下表: + 0 - - 0 + ↗ 极大值 ↘ ↘ 极小值 ↗ ∴在,内是增函数,在,内是减函数. ⑶由⑵知,在上的最大值为与的较大者,对于任意的,不等式在上恒成立,当且仅当,即,对任意的成立.从而得,所以满足条件的的取值范围是. 恒成立之分离常数 6. (2011长春一模,恒成立,分离常数,二阶导数) 已知函数,(其中R,为自然对数的底数). (1)当时,求曲线在处的切线方程; (2)当≥1时,若关于的不等式≥0恒成立,求实数的取值范围. (改x≥0时,≥0恒成立.≤1) 解:(1)当时,,,, 切线方程为. (2)[方法一] ≥1,1 2 ) ( 2 - - - = \ ax x e x f x ≥a Û 0 ≤x x e x 1 2 2 - - , 设x x e x g x 1 2 ) ( 2 - - = ,则2 2 1 2 ) 1 ( ) ( ' x x e x x g x + - - = , 设,则, 在上为增函数,≥, ,在上为增函数, ≥,≤. [方法二], , 设,, ≥0,≥0,在上为增函数, ≥. 又≥0恒成立,≥0,≤, ≥,, 在上为增函数, 此时≥≥0恒成立, ≤. (改x≥0时,≥0恒成立.≤1) 解:先证明在上是增函数,再由洛比达法则,∴,∴≤1.(正常的讨论进行不了,除非系数调到二次项上,分两种情况讨论可得≤1) 已知函数 . (Ⅰ)若函数在区间其中a >0,上存在极值,求实数a的取值范围; (Ⅱ)如果当时,不等式恒成立,求实数k的取值范围; 解:(Ⅰ)因为, x >0,则, 当时,;当时,. 所以在(0,1)上单调递增;在上单调递减, 所以函数在处取得极大值. 因为函数在区间(其中)上存在极值, 所以 解得. (Ⅱ)不等式即为 记 所以 令,则, , 在上单调递增, ,从而, 故在上也单调递增, 所以,所以 设函数. ⑴若函数在处与直线相切: ①求实数的值;②求函数在上的最大值; ⑵当时,若不等式≥对所有的都成立,求实数的取值范围. 解:(1)①。 ∵函数在处与直线相切解得 . ② 当时,令得;令,得,上单调递增,在[1,e]上单调递减,. (2)当b=0时,若不等式对所有的都成立,则对所有的都成立, 即对所有的都成立, 令为一次函数, . 上单调递增,, 对所有的都成立. .. (注:也可令所有的都成立,分类讨论得对所有的都成立,,请根据过程酌情给分) 恒成立之讨论字母范围 7. (2007全国I,利用均值,不常见) 设函数. ⑴证明:的导数; ⑵若对所有都有,求的取值范围. 解:⑴的导数.由于,故. (当且仅当时,等号成立). ⑵令,则, ①若,当时,, 故在上为增函数, 所以,时,,即. ②若,方程的正根为, 此时,若,则,故在该区间为减函数. 所以,时,,即,与题设相矛盾. 综上,满足条件的的取值范围是. 设函数. ⑴若,求的最小值;⑵若当时,求实数的取值范围. 解:(1)时,,. 当时,;当时,. 所以在上单调减小,在上单调增加 故的最小值为 (2), 当时,,所以在上递增, 而,所以,所以在上递增, 而,于是当时, . 当时,由得 当时,,所以在上递减, 而,于是当时,,所以在上递减, 而,所以当时,. 综上得的取值范围为. 近三年新课标导数高考试题 [2011] 1、(2)下列函数中,既是偶函数又在单调递增的函数是B (A) (B) (C) (D) 2、(9)由曲线,直线及轴所围成的图形的面积为C (A) (B)4 (C) (D)6 4、(21)(本小题满分12分) 已知函数,曲线在点处的切线方程为。 (Ⅰ)求、的值;(Ⅱ)如果当,且时,,求的取值范围。 (21)解:(Ⅰ) 由于直线的斜率为,且过点,故即 解得,。 (Ⅱ)由(Ⅰ)知,所以。 考虑函数,则。 (i)设,由知,当时,。而,故 当时,,可得; 当x(1,+)时,h(x)<0,可得 h(x)>0 从而当x>0,且x1时,f(x)-(+)>0,即f(x)>+. (ii)设0<k<1.由于当x(1,)时,(k-1)(x2 +1)+2x>0,故 (x)>0, 而h(1)=0,故当x(1,)时,h(x)>0,可得h(x)<0,与题设矛盾。 (iii)设k1.此时(x)>0,而h(1)=0,故当x(1,+)时,h(x)>0,可得 h(x)<0,与题设矛盾。 综合得,k的取值范围为(-,0] [2012] 5、(12)设点P在曲线y=ex 上,点Q在曲线y=ln(2x)上,则|pQ|最小值为B (A) 1-ln2 (B) (C)1+ln2 (D) 6、已知函数f(x)满足 (1)求f(x)的解析式及单调区间; (2)若求(a+1)b的最大值。 【解析】(1) 令得: 得: 在上单调递增 得:的解析式为 且单调递增区间为,单调递减区间为 (2)得 ①当时,在上单调递增 时,与矛盾 ②当时, 得:当时, 令;则 当时, 当时,的最大值为 【2013年】 7、16、若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值是______. 【解析】由图像关于直线=-2对称,则 0==, 0==,解得=8,=15, ∴=, ∴== = 当∈(-∞,)∪(-2, )时,>0, 当∈(,-2)∪(,+∞)时,<0, ∴在(-∞,)单调递增,在(,-2)单调递减,在(-2,)单调递增,在(,+∞)单调递减,故当=和=时取极大值,==16. 8、(21)(本小题满分共12分) 已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2 (Ⅰ)求a,b,c,d的值(Ⅱ)若x≥-2时, ,求k的取值范围。 【解析】(Ⅰ)由已知得, 而=,=,∴=4,=2,=2,=2;……4分 (Ⅱ)由(Ⅰ)知,,, 设函数==(), ==,有题设可得≥0,即, 令=0得,=,=-2, (1)若,则-2<≤0,∴当时,<0,当时, >0,即在单调递减,在单调递增,故在=取最小值, 而==≥0, ∴当≥-2时,≥0,即≤恒成立, (2)若,则=, ∴当≥-2时,≥0,∴在(-2,+∞)单调递增,而=0, ∴当≥-2时,≥0,即≤恒成立, (3) 若,则==<0,∴当≥-2时,≤不可能恒成立, (4) 综上所述,的取值范围为[1,]. 20
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服