收藏 分销(赏)

大学物理学(第三版)课后习题参考答案.doc

上传人:天**** 文档编号:10554878 上传时间:2025-06-02 格式:DOC 页数:10 大小:480.50KB
下载 相关 举报
大学物理学(第三版)课后习题参考答案.doc_第1页
第1页 / 共10页
大学物理学(第三版)课后习题参考答案.doc_第2页
第2页 / 共10页
点击查看更多>>
资源描述
大学物理学(第三版)课后习题参考答案 习题1 1.1选择题 (1) 一运动质点在某瞬时位于矢径的端点处,其速度大小为 (A) (B) (C) (D) [答案:D] (2) 一质点作直线运动,某时刻的瞬时速度,瞬时加速度,则一秒钟后质点的速度 (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 [答案:D] (3) 一质点沿半径为R的圆周作匀速率运动,每t秒转一圈,在2t时间间隔中,其平均速度大小和平均速率大小分别为 (A) (B) (C) (D) [答案:B] 1.2填空题 (1) 一质点,以的匀速率作半径为5m的圆周运动,则该质点在5s内,位移的大小是         ;经过的路程是         。 [答案: 10m; 5πm] (2) 一质点沿x方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v0为5m·s-1,则当t为3s时,质点的速度v=         。 [答案: 23m·s-1 ] (3) 轮船在水上以相对于水的速度航行,水流速度为,一人相对于甲板以速度行走。如人相对于岸静止,则、和的关系是         。 [答案: ] 1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。 解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。 1.4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。 给出这个匀变速直线运动在t=3s时的速度和加速度,并说明该时刻运动是加速的还是减速的。(x单位为m,t单位为s) 解:匀变速直线运动即加速度为不等于零的常数时的运动。加速度又是位移对时间的两阶导数。于是可得(3)为匀变速直线运动。 其速度和加速度表达式分别为 t=3s时的速度和加速度分别为v=20m/s,a=4m/s2。因加速度为正所以是加速的。 1.5 在以下几种运动中,质点的切向加速度、法向加速度以与加速度哪些为零哪些不为零? (1) 匀速直线运动;(2) 匀速曲线运动;(3) 变速直线运动;(4) 变速曲线运动。 解:(1) 质点作匀速直线运动时,其切向加速度、法向加速度与加速度均为零; (2) 质点作匀速曲线运动时,其切向加速度为零,法向加速度和加速度均不为零; (3) 质点作变速直线运动时,其法向加速度为零,切向加速度和加速度均不为零; (4) 质点作变速曲线运动时,其切向加速度、法向加速度与加速度均不为零。 1.6 ||与 有无不同?和有无不同? 和有无不同?其不同在哪里?试举例说明. 解:(1)是位移的模,是位矢的模的增量,即,; (2)是速度的模,即. 只是速度在径向上的分量. ∵有(式中叫做单位矢),则 式中就是速度在径向上的分量, ∴不同如题1.6图所示. 题1.6图 (3)表示加速度的模,即,是加速度在切向上的分量. ∵有表轨道节线方向单位矢),所以 式中就是加速度的切向分量. (的运算较复杂,超出教材规定,故不予讨论) 1.7 设质点的运动方程为=(),=(),在计算质点的速度和加速度时,有人先求出r=,然后根据 =与=而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 =,= 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有, 故它们的模即为 而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作 其二,可能是将误作速度与加速度的模。在1.6题中已说明不是速度的模,而只是速度在径向上的分量,同样,也不是加速度的模,它只是加速度在径向分量中的一部分。或者概括性地说,前一种方法只考虑了位矢在径向(即量值)方面随时间的变化率,而没有考虑位矢与速度的方向随时间的变化率对速度、加速度的贡献。 1.8 一质点在平面上运动,运动方程为 =3+5, =2+3-4. 式中以 s计,,以m计.(1)以时间为变量,写出质点位置矢量的表示式;(2)求出=1 s 时刻和=2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算=0 s时刻到=4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算=4 s 时质点的速度;(5)计算=0s 到=4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算=4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式). 解:(1) (2)将,代入上式即有 (3)∵ ∴ (4) 则 (5)∵ (6) 这说明该点只有方向的加速度,且为恒量。 1.9 质点沿轴运动,其加速度和位置的关系为 =2+6,的单位为,的单位为 m. 质点在=0处,速度为10,试求质点在任何坐标处的速度值. 解: ∵ 分离变量: 两边积分得 由题知,时,,∴ ∴ 1.10 已知一质点作直线运动,其加速度为 =4+3 ,开始运动时,=5 m, =0,求该质点在=10s 时的速度和位置. 解:∵ 分离变量,得 积分,得 由题知,, ,∴ 故 又因为 分离变量, 积分得 由题知 , ,∴ 故 所以时 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+3,式中以弧度计,以秒计,求:(1) =2 s时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少? 解: (1)时, (2)当加速度方向与半径成角时,有 即 亦即 则解得 于是角位移为 1.12 质点沿半径为的圆周按=的规律运动,式中为质点离圆周上某点的弧长,,都是常量,求:(1)时刻质点的加速度;(2) 为何值时,加速度在数值上等于. 解:(1) 则 加速度与半径的夹角为 (2)由题意应有 即 ∴当时, 1.13 飞轮半径为0.4 m,自静止启动,其角加速度为β=90.2 rad·,求=2s时边缘上各点的速度、法向加速度、切向加速度和合加速度. 解:当时, 则 1.14 一船以速率=30km·h-1沿直线向东行驶,另一小艇在其前方以速率=40km·h-1 沿直线向北行驶,问在船上看小艇的速度为多少?在艇上看船的速度又为多少? 解:(1)大船看小艇,则有,依题意作速度矢量图如题1.14图(a) 题1.14图 由图可知 方向北偏西 (2)小艇看大船,则有,依题意作出速度矢量图如题1.14图(b),同上法,得 方向南偏东. 10 / 10
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 大学课件

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服