资源描述
2017-2018学年七年级数学上册整式的加减培优专题
专题一、找规律题
(一)、代数式找规律
1、观察下列单项式:,…
(1)观察规律,写出第2010和第2011个单项式;
(2)请你写出第m个单项式和第n+1个单项式。(m为自然数)
2、有一个多项式为…,按这种规律写下去,第六项是= ,最后一项是= 。
3、(1)观察一列数2,4,8,16,32,…发现从第二项开始,每一项与前一项之比是一个常数,这个常数是= ,根据此 规律,如果(n为正整数)表示这个数列的第n项,那么= ,= 。
(2)如果欲求的值,可令①,将①式两边同乘以3,得 ,②
由②减去①式,得S= ;
(3)由上可知,若数列,,,…,,从第二项开始每一项与前一项之比的常数为q,则= ,(用含,q,n的代数式表示),如果这个常数q≠1,那么+++…+= (用含,q,n的代数式表示)。
4、 观察下列一组数: , , , ,…… ,它们是按一定规律排列的,那么这一组数的第n个数是 .
(二)、图形找规律
5、用棋子摆成如图所示的“T”字图案.
(1)摆成第一个“T”字需要 个棋子,第二个图案需要 个棋子;
(2)按这样的规律摆下去,摆成第10个“T”字需要 个棋子,第n个需要 个棋子.
6、如图是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中棋子个数是= ,第n个“广”字中棋子个数是= 。
7、下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第个图中所贴剪纸“●”的个数为 .
(1)
(2)
(3)
……
……
8、将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有________个小圆; 第n个图形有______个小圆.
第1个图形
第2个图形
第3个图形
第4个图形
…
9、观察下列图形,则第个图形中三角形的个数是( )
……
第1个
第2个
第3个
A. B. C. D.
10、观察如下图的点阵图和相应的等式,探究其中的规律:
……
……
①1=12
②1+3=22
③1+3+5=32
④
⑤
(1)在④和⑤后面的横线上分别写出相应的等式;
(2)通过猜想写出与第n个点阵相对应的等式_____________
11、下图是某同学在沙滩上用石于摆成的小房子:
观察图形的变化规律,写出第n个小房子用了[(n+1)2+(2n-1)] 块石子。
解析:第一个小房子:5=1+4=1+22
第二个小房子:12=3+9=3+32
第三个小房子:21=5+16=5+42
第四个小房子:32=7+25=7+52
……………………
第n个小房子:(n+1)2+(2n-1)
专题二:整体代换问题
12、若=2010,则= 。
13、若式子的值是9,则的值是= 。
14、若实数a满足=0,则= 。
15、已知代数式=2,=5,则的值是多少?
16、当x=2010时,,那么x=-2010时,的值是多少?
专题三:绝对值问题
17、在数轴上的位置如图所示,
化简:
18、有理数a、b在数轴上位置如图所示,试化简.
19、有理数a、b、c在数轴上的对应点如图,化简代数式:
:
专题四:综合计算问题
20、若与的和是一个单项式,则m= ,n= 。
21、如果关于x的代数式的值与x的取值无关,则m= ,n= 。
22、已知m、n是系数,且与的差中不含二次项,求的值。
23、已知,求的值。
24、 已知,求的值。
25、 已知均为正整数,且,求的值。
26、已知,求的值。
28、某地电话拨号入网有两种收费方式,用户可以任选其一。A:计时制:0.05元/分;B:包月制:50元/月(限一部个人住宅电话上网)。此外,每一种上网方式都加收通信费0.02元/分。
(1)某用户每月上网时间为x小时,请你分别写出两种收费方式下改用户应该支付的费用;
(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?
28、3(22+1)(24+1)(28+1)……(232+1)+1的个位数是多少。
解:3(22+1)(24+1)(28+1)……(232+1)+1
=(22-1)(22+1)(24+1)(28+1)……(232+1)+1
=(24-1) (24+1)(28+1)……(232+1)+1
=(28-1) (28+1)……(232+1)+1
=264-1+1
=264= (24)16=(16)16
∵16的任何次方的个位数都是6
∴3(22+1)(24+1)(28+1)……(232+1)+1的个位数是6.
专题五:应用问题
29、 一位同学做一道题:“已知两个多项式A,B,计算2A+B”。他误将“2A+B”看成“A+2B”,求得的结果为。已知B=,求原题的正确答案。
31、小星和小月玩猜数游戏,小星说:“你随便选定三个一位数,按这样的步骤去算:①把第一个数乘以2;②加上5;③乘以5;④加上第二个数;⑤乘以10;⑥加上第三个数。只要你告诉我最后的得数,我就能知道你所想的三个一位数。”小月不相信。但试了几次,小星都猜对了,你知道小星是怎样猜的吗?如果小月告诉小星的数是484,你知道小月所想的三个一位数是什么吗?
分析:设这三个数分别是abc,再根据①把第一个数乘以2;②加上5;③乘以5;④加上第二个数;⑤乘以10;⑥加上第三个数,把所得的式子化简,再减去250把第一个数除以100,第二个数除以10即可.
解答:解:设这三个数分别是a、b、c,
∵①把第一个数乘以2;②加上5;③乘以5;④加上第二个数;⑤乘以10;⑥加上第三个数,
∴[(2a+5)×5+b]×10+c
=[10a+b+25]×10+c
=100a+10b+c+250,再减去250,把第一个数除以100,第二个数除以10即可得出这三个数.
∴484-250=234=2×100+3×10+4 ∴a=2,b=3,c=4
32、七年级一班的小明和小王是好朋友。有一次,小王拿出一副扑克牌,让小明从中任意抽出一张牌,且让他将牌上的点数默记心中。小王说:“请你将点数乘2加3后再乘5,再减去25,算出答案后告诉我,我就知道你所抽的牌是几点。”小明算完后说“100”。小王马上宣布:“你抽的牌是J。”小明很佩服。你能帮小明分析其中的奥秘吗?若小明算出的答案是120,他抽到的是哪张牌?
分析:设这个数为x,在根据“将点数乘2加3后再乘5,再减去25”,设计算后所得到数是y,那么y=(2x+3)×5-25。
解答:设这个数为x,计算后所得到数是y,
∵将这个数乘2加3后再乘5,再减去25
∴(2x+3)×5-25=y
10(x-1)=y
X=y/10+1
∴当y=120时,x=120/10+1=13
即,答案是120时,他所抽到的牌是K。
展开阅读全文