收藏 分销(赏)

整式的加减培优拓展专题补习.doc

上传人:人****来 文档编号:10484100 上传时间:2025-05-30 格式:DOC 页数:6 大小:213.05KB
下载 相关 举报
整式的加减培优拓展专题补习.doc_第1页
第1页 / 共6页
整式的加减培优拓展专题补习.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
2017-2018学年七年级数学上册整式的加减培优专题 专题一、找规律题 (一)、代数式找规律 1、观察下列单项式:,… (1)观察规律,写出第2010和第2011个单项式; (2)请你写出第m个单项式和第n+1个单项式。(m为自然数) 2、有一个多项式为…,按这种规律写下去,第六项是= ,最后一项是= 。 3、(1)观察一列数2,4,8,16,32,…发现从第二项开始,每一项与前一项之比是一个常数,这个常数是= ,根据此 规律,如果(n为正整数)表示这个数列的第n项,那么= ,= 。 (2)如果欲求的值,可令①,将①式两边同乘以3,得 ,② 由②减去①式,得S= ; (3)由上可知,若数列,,,…,,从第二项开始每一项与前一项之比的常数为q,则= ,(用含,q,n的代数式表示),如果这个常数q≠1,那么+++…+= (用含,q,n的代数式表示)。 4、 观察下列一组数: , , , ,…… ,它们是按一定规律排列的,那么这一组数的第n个数是 . (二)、图形找规律 5、用棋子摆成如图所示的“T”字图案. (1)摆成第一个“T”字需要 个棋子,第二个图案需要 个棋子; (2)按这样的规律摆下去,摆成第10个“T”字需要 个棋子,第n个需要 个棋子. 6、如图是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中棋子个数是= ,第n个“广”字中棋子个数是= 。 7、下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第个图中所贴剪纸“●”的个数为 . (1) (2) (3) …… …… 8、将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有________个小圆; 第n个图形有______个小圆. 第1个图形 第2个图形 第3个图形 第4个图形 … 9、观察下列图形,则第个图形中三角形的个数是( ) …… 第1个 第2个 第3个 A. B. C. D. 10、观察如下图的点阵图和相应的等式,探究其中的规律: …… …… ①1=12 ②1+3=22 ③1+3+5=32 ④ ⑤ (1)在④和⑤后面的横线上分别写出相应的等式; (2)通过猜想写出与第n个点阵相对应的等式_____________ 11、下图是某同学在沙滩上用石于摆成的小房子: 观察图形的变化规律,写出第n个小房子用了[(n+1)2+(2n-1)] 块石子。 解析:第一个小房子:5=1+4=1+22 第二个小房子:12=3+9=3+32 第三个小房子:21=5+16=5+42 第四个小房子:32=7+25=7+52 …………………… 第n个小房子:(n+1)2+(2n-1) 专题二:整体代换问题 12、若=2010,则= 。 13、若式子的值是9,则的值是= 。 14、若实数a满足=0,则= 。 15、已知代数式=2,=5,则的值是多少? 16、当x=2010时,,那么x=-2010时,的值是多少? 专题三:绝对值问题 17、在数轴上的位置如图所示, 化简: 18、有理数a、b在数轴上位置如图所示,试化简. 19、有理数a、b、c在数轴上的对应点如图,化简代数式: : 专题四:综合计算问题 20、若与的和是一个单项式,则m= ,n= 。 21、如果关于x的代数式的值与x的取值无关,则m= ,n= 。 22、已知m、n是系数,且与的差中不含二次项,求的值。 23、已知,求的值。 24、 已知,求的值。 25、 已知均为正整数,且,求的值。 26、已知,求的值。 28、某地电话拨号入网有两种收费方式,用户可以任选其一。A:计时制:0.05元/分;B:包月制:50元/月(限一部个人住宅电话上网)。此外,每一种上网方式都加收通信费0.02元/分。 (1)某用户每月上网时间为x小时,请你分别写出两种收费方式下改用户应该支付的费用; (2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算? 28、3(22+1)(24+1)(28+1)……(232+1)+1的个位数是多少。 解:3(22+1)(24+1)(28+1)……(232+1)+1 =(22-1)(22+1)(24+1)(28+1)……(232+1)+1 =(24-1) (24+1)(28+1)……(232+1)+1 =(28-1) (28+1)……(232+1)+1 =264-1+1 =264= (24)16=(16)16 ∵16的任何次方的个位数都是6 ∴3(22+1)(24+1)(28+1)……(232+1)+1的个位数是6. 专题五:应用问题 29、 一位同学做一道题:“已知两个多项式A,B,计算2A+B”。他误将“2A+B”看成“A+2B”,求得的结果为。已知B=,求原题的正确答案。 31、小星和小月玩猜数游戏,小星说:“你随便选定三个一位数,按这样的步骤去算:①把第一个数乘以2;②加上5;③乘以5;④加上第二个数;⑤乘以10;⑥加上第三个数。只要你告诉我最后的得数,我就能知道你所想的三个一位数。”小月不相信。但试了几次,小星都猜对了,你知道小星是怎样猜的吗?如果小月告诉小星的数是484,你知道小月所想的三个一位数是什么吗? 分析:设这三个数分别是abc,再根据①把第一个数乘以2;②加上5;③乘以5;④加上第二个数;⑤乘以10;⑥加上第三个数,把所得的式子化简,再减去250把第一个数除以100,第二个数除以10即可. 解答:解:设这三个数分别是a、b、c, ∵①把第一个数乘以2;②加上5;③乘以5;④加上第二个数;⑤乘以10;⑥加上第三个数, ∴[(2a+5)×5+b]×10+c =[10a+b+25]×10+c =100a+10b+c+250,再减去250,把第一个数除以100,第二个数除以10即可得出这三个数. ∴484-250=234=2×100+3×10+4 ∴a=2,b=3,c=4 32、七年级一班的小明和小王是好朋友。有一次,小王拿出一副扑克牌,让小明从中任意抽出一张牌,且让他将牌上的点数默记心中。小王说:“请你将点数乘2加3后再乘5,再减去25,算出答案后告诉我,我就知道你所抽的牌是几点。”小明算完后说“100”。小王马上宣布:“你抽的牌是J。”小明很佩服。你能帮小明分析其中的奥秘吗?若小明算出的答案是120,他抽到的是哪张牌? 分析:设这个数为x,在根据“将点数乘2加3后再乘5,再减去25”,设计算后所得到数是y,那么y=(2x+3)×5-25。 解答:设这个数为x,计算后所得到数是y, ∵将这个数乘2加3后再乘5,再减去25 ∴(2x+3)×5-25=y 10(x-1)=y X=y/10+1 ∴当y=120时,x=120/10+1=13 即,答案是120时,他所抽到的牌是K。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服