资源描述
2011年广东省汕头市中考数学试卷
一、选择题(本大题5小题,每小题3分,共15分)
1.-2的倒数是( )
A.2 B.-2 C. D.
2.据中新社北京2010年l2月8日电2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )
A.吨 B.吨 C.吨 D.吨
3.将左下图中的箭头缩小到原来的,得到的图形是( )
4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )
A. B. C. D.
5.正八边形的每个内角为( )
A.120° B.135° C.140° D.144°
二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.
6.已知反比例函数的图象经过(1,-2).则 .
7.使在实数范围内有意义的x的取值范围是 .
8.按下面程序计算:输入x=3,则输出的答案是__ _ .
9.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点,连结BC.若∠A=40°,则∠C= °
10.如图(1) ,将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和△1D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E 2F 2,如图(3) 中阴影部分;如此下去…,则正六角星形AnFnBnDnCnE nF n的面积为 .
三、解答题(一)(本大题5小题,每小题6分,共30分)
11.计算:
12.解不等式组:,并把解集在数轴上表示出来.
13.已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.
求证:AE=CF.
14.如图,在平面直角坐标系中,点P的坐标为(-4,0),⊙P的半径为2,将⊙P沿着x轴向右平稳4个长度单位得⊙P1.
(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;
(2)设⊙P1与x轴正半轴,y轴正半轴的交点为A,B,求劣弧与弦AB围成的图形的面积(结果保留)
15.已知抛物线与x轴有交点.
(1)求c的取值范围;
(2)试确定直线y=cx+l经过的象限,并说明理由.
四、解答题(二)(本大题4小题,每小题7分,共28分)
16.某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?
17.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路。现新修一条路AC到公路l.小明测量出∠ACD=30°,∠ABD=45°,BC=50m.请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:)
18.李老师为了解班里学生的作息时间,调查班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每 组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:
(1)此次调查的总体是什么?
(2)补全频数分布直方图;
(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?
19.如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D.点C落在点E处,BF是折痕,且BF= CF =8.
(l)求∠BDF的度数;
(2)求AB的长.
五、解答题(三)(本大题3小题,每小题9分,共27分)
20.如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.
(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;
(2)用含n的代数式表示:第n行的第一个数是 ,最后一个数是 ,第n行共有 个数;
(3)求第n行各数之和.
21.如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2).
(1)问:始终与△AGC相似的三角形有 及 ;
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);
(3)问:当x为何值时,△AGH是等腰三角形?
22.如图,抛物线与y轴交于点A,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).
(1)求直线AB的函数关系式;
(2)动点P在线段OC上,从原点O出发以每钞一个单位的速度向C移动,过点P作⊥x轴,交直线AB于点M,抛物线于点N,设点P移动的时间为t秒,MN的长为s个单位,求s与t的函数关系式,并写出t的取值范围;
(3)设(2)的条件下(不考虑点P与点O,点G重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平等四边形?问对于所求的t的值,平行四边形BCMN是否为菱形?说明理由.
参考答案:
1—5、DBACB
6、-2 7、 8、26 9、 10、
11、【解】原式=1+-4
=0
12、【解】解不等式①,得x>-2
解不等式②,得x≥3
所以,原不等式组的解集为x≥3,解集表示在数轴上为:
13、【答案】∵AD∥CB
∴∠A=∠C
又∵AD=CB,∠D=∠B
∴△ADF≌△CBE
∴AF=CE
∴AF+EF=CE+EF
即AE=CF
14、
【答案】(1)如图所示,两圆外切;
(2)劣弧的长度
劣弧和弦围成的图形的面积为
15、【答案】(1)∵抛物线与x轴没有交点
∴⊿<0,即1-2c<0
解得c>
(2)∵c>
∴直线y=x+1随x的增大而增大,
∵b=1
∴直线y=x+1经过第一、二、三象限
16、【答案】设该品牌饮料一箱有x瓶,由题意,得
解这个方程,得
经检验,都是原方程的根,但不符合题意,舍去.
答:该品牌饮料一箱有10瓶.
17、【解】设小明家到公路的距离AD的长度为xm.
在Rt△ABD中,
∵∠ABD=,∴BD=AD=x
在Rt△ABD中,
∵∠ACD=,∴,即
解得
小明家到公路的距离AD的长度约为68.2m.
18、【解】(1)此次调查的总体是:班上50名学生上学路上花费的时间的全体.
(2)补全图形,如图所示:
(3)该班学生上学路上花费时间在30分钟以上的人数有5人,总人数有50,
5÷50=0.1=10%
答:该班学生上学路上花费时间在30分钟以上的人数占全班人数的百分之10.
19、【解】(1)∵BF=CF,∠C=,
∴∠FBC=,∠BFC=
又由折叠可知∠DBF=
∴∠BDF=
(2)在Rt△BDF中,
∵∠DBF=,BF=8
∴BD=
∵AD∥BC,∠A=
∴∠ABC=
又∵∠FBC=∠DBF=
∴∠ABD=
在Rt△BDA中,
∵∠AVD=,BD=
∴AB=6.
20、【解】(1)64,8,15;
(2),,;
(3)第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×7-13;类似的,第n行各数之和等于=.
21、【解】(1)△HGA及△HAB;
(2)由(1)可知△AGC∽△HAB
∴,即,
所以,
(3)当CG<时,∠GAC=∠H<∠HAC,∴AC<CH
∵AG<AC,∴AG<GH
又AH>AG,AH>GH
此时,△AGH不可能是等腰三角形;
当CG=时,G为BC的中点,H与C重合,△AGH是等腰三角形;
此时,GC=,即x=
当CG>时,由(1)可知△AGC∽△HGA
所以,若△AGH必是等腰三角形,只可能存在AG=AH
若AG=AH,则AC=CG,此时x=9
综上,当x=9或时,△AGH是等腰三角形.
22、【解】(1)把x=0代入,得
把x=3代入,得,
∴A、B两点的坐标分别(0,1)、(3,)
设直线AB的解析式为,代入A、B的坐标,得
,解得
所以,
(2)把x=t分别代入到和
分别得到点M、N的纵坐标为和
∴MN=-()=
即
∵点P在线段OC上移动,
∴0≤t≤3.
(3)在四边形BCMN中,∵BC∥MN
∴当BC=MN时,四边形BCMN即为平行四边形
由,得
即当时,四边形BCMN为平行四边形
当时,PC=2,PM=,PN=4,由勾股定理求得CM=BN=,
此时BC=CM=MN=BN,平行四边形BCMN为菱形;
当时,PC=1,PM=2,由勾股定理求得CM=,
此时BC≠CM,平行四边形BCMN不是菱形;
所以,当时,平行四边形BCMN为菱形.
展开阅读全文