资源描述
高中数学基础知识大全(新课标版)
第一部分 集合
1.理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?…
2 .数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决
3.(1) 元素与集合的关系:,.
(2)德摩根公式: .
(3)
注意:讨论的时候不要遗忘了的情况.
(4)集合的子集个数共有 个;真子集有–1个;非空子集有 –1个;
非空真子集有–2个.
4.是任何集合的子集,是任何非空集合的真子集.
第二部分 函数
1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一.
2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;
⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、
绝对值的意义等);⑧利用函数有界性(、、等);⑨平方法;⑩ 导数法
3.复合函数的有关问题:
(1)复合函数定义域求法:
① 若f(x)的定义域为[a,b],则复合函数f[g(x)]的定义域由不等式a ≤ g(x) ≤ b解出
② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域.
(2)复合函数单调性的判定:
①首先将原函数分解为基本函数:内函数与外函数
②分别研究内、外函数在各自定义域内的单调性
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性.
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性:
⑴函数的定义域关于原点对称是函数具有奇偶性的前提条件
⑵是奇函数;是偶函数.
⑶奇函数在0处有定义,则
⑷在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性
⑸若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性
6.函数的单调性:
⑴单调性的定义:
①在区间上是增函数当时有;
②在区间上是减函数当时有;
⑵单调性的判定:①定义法:一般要将式子化为几个因式作积或作商的形式,以利于判断符号;②复合函数法③图像法
注:证明单调性主要用定义法。
7.函数的周期性:
(1)周期性的定义:对定义域内的任意,若有 (其中为非零常数),则称函数为周期函数,为它的一个周期。所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。
(2)三角函数的周期:① ;② ;③;
④ ;⑤
(3)与周期有关的结论:
或 的周期为
8.基本初等函数的图像与性质:
㈠.⑴指数函数:;⑵对数函数:;
⑶幂函数: ( ;⑷正弦函数:;⑸余弦函数: ;
(6)正切函数:;⑺一元二次函数:(a≠0);⑻其它常用函数:
① 正比例函数:;②反比例函数:;③函数
㈡.⑴分数指数幂:;(以上,且).
⑵.①; ②;
③; ④.
⑶.对数的换底公式:.对数恒等式:.
9.二次函数:
⑴解析式:①一般式:;②顶点式:,为顶点;
③零点式: (a≠0).
⑵二次函数问题解决需考虑的因素:
①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。
二次函数的图象的对称轴方程是,顶点坐标是。
10.函数图象:
⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法 ③导数法
⑵图象变换:
① 平移变换:ⅰ),———左“+”右“-”;
ⅱ) ———上“+”下“-”;
② 对称变换:ⅰ);ⅱ);
ⅲ) ; ⅳ);
③ 翻折变换:
ⅰ)———(去左翻右)y轴右不动,右向左翻(在左侧图象去掉);
ⅱ)———(留上翻下)x轴上不动,下向上翻(||在下面无图象);
12.函数零点的求法:
⑴直接法(求的根);⑵图象法;⑶二分法.
(4)零点定理:若y=f(x)在[a,b]上满足f(a)·f(b)<0 , 则y=f(x)在(a,b)内至少有一个零点。
第三部分 三角函数、三角恒等变换与解三角形
1.⑴角度制与弧度制的互化:弧度,弧度,弧度
⑵弧长公式:;扇形面积公式:。
2.三角函数定义:角终边上任一点(非原点)P,设 则:
3.三角函数符号规律:一全正,二正弦,三正切,四余弦;(简记为“全s t c”)
4.诱导公式记忆规律:“奇变偶不变,符号看象限”
5.⑴ 对称轴:令,得 对称中心:;
⑵ 对称轴:令,得;对称中心:;
⑶周期公式:①函数及的周期 (A、ω、为常数,
且A≠0).②函数的周期 (A、ω、为常数,且A≠0).
6.同角三角函数的基本关系:
7.三角函数的单调区间及对称性:
⑴的单调递增区间为,单调递减区间为
,对称轴为,对称中心为.
⑵的单调递增区间为,单调递减区间为,
对称轴为,对称中心为.
⑶的单调递增区间为,对称中心为.
8.两角和与差的正弦、余弦、正切公式:
①;;
.
②;.
③=(其中,辅助角所在象限由点所在的象限
决定, ).
9.二倍角公式:①.
②(升幂公式).
(降幂公式).
10.正、余弦定理:
⑴正弦定理: (是外接圆直径 )
注:①;②;③。
⑵余弦定理:等三个; 等三个。
11.几个公式:⑴三角形面积公式:①(分别表示a、b、c边上的高);②.③
⑵内切圆半径r=; 外接圆直径2R=
第四部分 平面向量
1.平面上两点间的距离公式:,其中A,B.
2.向量的平行与垂直: 设=,=,且,则:
①∥=λ;
② ()·=0.
3.a·b=|a||b|cos<a,b>=xx2+y1y2;
注:①|a|cos<a,b>叫做a在b方向上的投影;|b|cos<a,b>叫做b在a方向上的投影;
②a·b的几何意义:a·b等于|a|与|b|在a方向上的投影|b|cos<a,b>的乘积。
4.cos<a,b>=;
5.三点共线的充要条件:P,A,B三点共线。
第五部分 数列
1.定义:
⑵等比数列
2.等差、等比数列性质:
等差数列 等比数列
通项公式
前n项和
性质 ①an=am+ (n-m)d, ①an=amqn-m;
②m+n=p+q时am+an=ap+aq ②m+n=p+q时aman=apaq
③成AP ③成GP
④成AP, ④成GP,
3.常见数列通项的求法:
an=
S1 (n=1)
Sn-Sn-1 (n≥2)
⑴定义法(利用AP,GP的定义);⑵累加法(型);⑶公式法:
⑷累乘法(型);⑸待定系数法(型)转化为
(6)间接法(例如:);(7)(理科)数学归纳法。
4.前项和的求法:⑴分组求和法;⑵错位相减法;⑶裂项法。
5.等差数列前n项和最值的求法:
⑴最大值 ;⑵利用二次函数的图象与性质。
第六部分 不等式
1.均值不等式:
注意:①一正二定三相等;②变形:。
2.极值定理:已知都是正数,则有:
(1)如果积是定值,那么当时和有最小值;
(2)如果和是定值,那么当时积有最大值.
3.解一元二次不等式:若,则对于解集不是全集或空集时,对应的
解集为“大两边,小中间”.如:当,;
.
4.含有绝对值的不等式:当时,有:①;
②或.
5*.分式不等式:
(1); (2);
(3) ; (4).
6*.指数不等式与对数不等式
(1)当时,;.
(2)当时,;
3.不等式的性质:
⑴;⑵;⑶;
;⑷;;
;⑸;⑹
第七部分 概率
1.事件的关系:
⑴事件B包含事件A:事件A发生,事件B一定发生,记作;
⑵事件A与事件B相等:若,则事件A与B相等,记作A=B;
⑶并(和)事件:某事件发生,当且仅当事件A发生或B发生,记作(或);
⑷并(积)事件:某事件发生,当且仅当事件A发生且B发生,记作(或) ;
⑸事件A与事件B互斥:若为不可能事件(),则事件A与互斥;
⑹对立事件:为不可能事件,为必然事件,则A与B互为对立事件。
2.概率公式:
⑵古典概型:;
⑶几何概型: ;
第八部分 统计与统计案例
1.抽样方法:
⑴简单随机抽样:一般地,设一个总体的个数为N,通过逐个不放回的方法从中抽取一个容量
为n的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。
注:①每个个体被抽到的概率为;
②常用的简单随机抽样方法有:抽签法;随机数表法。
⑵系统抽样:当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的规则,从
每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。
注:步骤:①编号;②分段;③在第一段采用简单随机抽样方法确定起始的个体编号;④按预
先制定的规则抽取样本。
⑶分层抽样:当已知总体有差异比较明显的几部分组成时,为使样本更充分的反映总体的情况,
将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。
注:每个部分所抽取的样本个体数=该部分个体数
注:以上三种抽样的共同特点是:在抽样过程中每个个体被抽取的概率相等
2.频率分布直方图与茎叶图:⑴用直方图反映样本的频率分布规律的直方图称为频率分布直方图。⑵当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边像植物茎上长出来的叶子,这种表示数据的图叫做茎叶图。
3.总体特征数的估计:
⑴样本平均数;
⑵样本方差 ;
⑶样本标准差=
第九部分 算法初步
1.程序框图:
⑴图形符号:
① 终端框(起止框);② 输入、输出框;
③
处理框(执行框);④ 判断框;⑤ 流程线 ;
⑵程序框图分类:
①顺序结构: ②条件结构: ③循环结构:
r =0? 否 求n除以i的余数
输入n 是
n不是质数 n是质数 i=i+1
i=2
in或r=0? 否
是
注:循环结构分为:Ⅰ.当型(while型) ——先判断条件,再执行循环体;
Ⅱ.直到型(until型)——先执行一次循环体,再判断条件。
2.基本算法语句:
⑴输入语句 INPUT “提示内容”;变量 ;输出语句:PRINT “提示内容”;表达式
赋值语句: 变量=表达式
⑵条件语句:① ②
IF 条件THEN IF条件 THEN
语句体 语句体1
END IF ELSE
语句体2
END IF
⑶循环语句:①当型: ②直到型:
WHILE条件 DO
循环体 循环体
WEND LOOP UNTIL 条件
新课标数学部分公式及结论
2.从集合到集合的映射有个.
3.函数的的单调性:
(1)设那么
上是增函数;
上是减函数.
(2)设函数在某个区间内可导,如果,则为增函数;如果,
则为减函数.
4*.函数的图象的对称性:
①的图象关于直线对称;
②的图象关于直线对称;
③的图象关于点对称,
的图象关于点对称.
6.奇偶函数的图象特征:
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原
点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
7.多项式函数的奇偶性:
多项式函数是奇函数的偶次项(即奇数项)的系数全为零.
多项式函数是偶函数的奇次项(即偶数项)的系数全为零.
8. 若将函数的图象右移、上移个单位,得到函数的图象;
9. 几个常见的函数方程:
(1)正比例函数,.
(2)指数函数,.
(3)对数函数,.
(4)幂函数,.
(5)余弦函数,正弦函数,,f(0)=1.
10*.几个函数方程的周期(约定a>0)
(1),则的周期T=a;
(2),或,或,
则的周期T=2a;
11.①等差数列的通项公式:,或.
②前n项和公式: .
12.设数列是等差数列,是奇数项的和,是偶数项的和,是前n项的和,则
①前n项的和;
②当n为偶数时,,其中d为公差;
③当n为奇数时,则,,,,
(其中是等差数列的中间一项)
13.若等差数列和的前项的和分别为和 ,则.
14.数列是等比数列,是其前n项的和,,那么()=·.
15.分期付款(按揭贷款):
每次还款元(贷款元,次还清,每期利率为).
16.裂项法:①; ②;
③ ;④.
17*.常见三角不等式:
(1)若,则.
(2) 若,则.
(3) .
18.正弦、余弦的诱导公式:
;.
即:“奇变偶不变,符号看象限”.如,.
19*.万能公式:;;(正切倍角公式).
20*.半角公式:.
21.三角函数变换:
①相位变换:的图象的图象;
②周期变换:的图象的图象;
③振幅变换:的图象的图象.
22.在△ABC中,有
①;
②(注意是在中).
24.若,则、、共线的等价条件是.
25.三角形的重心坐标公式: △ABC三个顶点的坐标分别为、、,
则其重心的坐标是.
28*. 三角形四“心”向量形式的充要条件:
设为所在平面上一点,角所对边长分别为,则:
(1)为的外心.
(2)为的重心.
(3)为的垂心.
(4)为的内心.
29.常用不等式:
(1)(当且仅当a=b时取“=”号).
(2)(当且仅当a=b时取“=”号).
(5).
(6)柯西不等式:
第 12 页
展开阅读全文