资源描述
第一章 空间几何体
一、选择题
1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).
主视图 左视图 俯视图
(第1题)
A.棱台 B.棱锥 C.棱柱 D.正八面体
2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为的等腰梯形,那么原平面图形的面积是( ).
A.2+ B. C. D.
3.棱长都是的三棱锥的表面积为( ).
A. B.2 C.3 D.4
4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).
A.25π B.50π C.125π D.都不对
5.正方体的棱长和外接球的半径之比为( ).
A.∶1 B.∶2 C.2∶ D.∶3
6.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).
A.130 B.140 C.150 D.160
7.如图是一个物体的三视图,则此物体的直观图是( ).
(第7题)
8.已知、、是直线,是平面,给出下列命题:
①若;
②若;
③若;
④若与b异面,且相交;
⑤若与b异面,则至多有一条直线与,b都垂直.
其中真命题的个数是
A.1 B.2 C.3 D.4
二、填空题
9.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.
10.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.
11.已知一个长方体共一顶点的三个面的面积分别是、、,则这个长方体的对角线长是___________,它的体积为___________.
三、解答题
12 .已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.
13.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.
(第13题)
15.S是正三角形ABC所在平面外的一点,如图SA=SB=SC,
B
M
A
N
C
S
且,M、N分别是AB和SC的中点.
求异面直线SM与BN所成的角的余弦值.
第一章 空间几何体
参考答案
一、选择题
1.A
解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.
2.A
解析:原图形为一直角梯形,其面积S=(1++1)×2=2+.
3.A
解析:因为四个面是全等的正三角形,则S表面=4×=.
4.B
解析:长方体的对角线是球的直径,
l==5,2R=5,R=,S=4πR2=50π.
5.C
解析:正方体的对角线是外接球的直径.
6.D
解析:设底面边长是a,底面的两条对角线分别为l1,l2,而=152-52,=92-52,
而+=4a2,即152-52+92-52=4a2,a=8,S侧面=4×8×5=160.
7.D
解析:过点E,F作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,
V=2×××3×2+×3×2×=.
8.D
解析:从三视图看底面为圆,且为组合体,所以选D.
9.A
二、填空题
10.参考答案:1∶2∶3.
r1∶r2∶r3=1∶∶,∶∶=13∶()3∶()3=1∶2∶3.
11.参考答案:.
解析:画出正方体,平面AB1D1与对角线A1C的交点是对角线的三等分点,
三棱锥O-AB1D1的高h=a,V=Sh=××2a2×a=a3.
另法:三棱锥O-AB1D1也可以看成三棱锥A-OB1D1,它的高为AO,等腰三角形OB1D1为底面.
12.参考答案:,.
解析:设ab=,bc=,ac=,则V = abc=,c=,a=,b=1,
l==.
三、解答题
13.参考答案:
如图是过正方体对角面作的截面.设半球的半径为R,正方体的棱长为a,则CC'=a,OC=a,OC'=R.
C'
A'
C
O
A
(第14题)
在Rt△C'CO中,由勾股定理,得CC' 2+OC2=OC' 2,
即 a2+(a)2=R2.
∴R=a,∴V半球=πa,V正方体=a.
∴V半球 ∶V正方体=π∶2.
14.参考答案:
S表面=S下底面+S台侧面+S锥侧面
=π×52+π×(2+5)×5+π×2×2
=(60+4)π.
V=V台-V锥
=π(+r1r2+)h-πr2h1
=π.
15.证明:连结CM,设Q为CM的中点,连结QN 则QN∥SM
∴∠QNB是SM与BN所成的角或其补角
连结BQ,设SC=a,在△BQN中
BN= NQ=SM=a BQ=
∴COS∠QNB=
第 5 页 共 5 页
展开阅读全文