资源描述
Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,*,第五章,数列,1/47,第三节,等比数列,微知识小题练,微考点大课堂,微考场新提升,2/47,3/47,微知识小题练,教材回扣基础自测,4/47,自|主|排|查,1,等比数列相关概念,(1)定义:,文字语言:从_起,每一项与它前一项_都等于_一个常数。,符号语言:_(,n,N,*,,,q,为非零常数)。,(2)等比中项:假如,a,,,G,,,b,成等比数列,那么_叫做,a,与,b,等比中项。即:,G,是,a,与,b,等比中项,a,,,G,,,b,成等比数列,G,2,_。,ab,第2项,比,G,同,5/47,2,等比数列相关公式,(1)通项公式:,a,n,_。,a,1,q,n,1,6/47,3,等比数列性质,(1)通项公式推广:,a,n,a,m,q,n,m,(,m,,,n,N,*,)。,(2)对任意正整数,m,,,n,,,p,,,q,,若,m,n,p,q,,则_。,尤其地,若,m,n,2,p,,则_。,(3)若等比数列前,n,项和为,S,n,,则,S,m,,,S,2,m,S,m,,,S,3,m,S,2,m,仍成等比数列,即(,S,2,m,S,m,),2,_,(,m,N,*,,公比,q,1)。,(4)数列,a,n,是等比数列,则数列,pa,n,(,p,0,,p,是常数)也是_数列。,(5)在等比数列,a,n,中,等距离取出若干项也组成一个等比数列,即,a,n,,,a,n,k,,,a,n,2,k,,,a,n,3,k,,为等比数列,公比为_。,等比,a,m,a,n,a,p,a,q,S,m,(,S,3,m,S,2,m,),q,k,7/47,微点提醒,1等比数列概念了解,(1)等比数列中各项及公比都不能为零。,(2)由,a,n,1,qa,n,(,q,0),并不能断言,a,n,为等比数列,还要验证,a,1,0。,(3)等比数列中奇数项符号相同,偶数项符号相同。,8/47,9/47,小|题|快|练,一、走进教材,1(必修5P,68,B组T,1(1),改编)等比数列,a,n,各项均为正数,且,a,5,a,6,a,4,a,7,18,则log,3,a,1,log,3,a,2,log,3,a,10,(),A12 B10,C8 D2log,3,5,【解析】,a,4,a,7,a,5,a,6,,,a,5,a,6,9,,又,log,3,a,1,log,3,a,2,log,3,a,10,log,3,(,a,1,a,2,a,10,),log,3,(,a,5,a,6,),5,log,3,9,5,10,。故选,B。,【答案】,B,10/47,11/47,二、双基查验,1等比数列,a,n,中,,a,4,4,则,a,2,a,6,等于(),A4B8,C16 D32,【解析】,a,2,a,6,a,16,。故选,C。,【答案】,C,12/47,2已知等比数列,a,n,满足,a,1,a,2,3,,a,2,a,3,6,则,a,7,(),A64 B81,C128 D243,13/47,3,(四川高考),某企业为激励创新,计划逐年加大研发资金投入。若该企业年整年投入研发资金130万元,在此基础上,每年投入研发资金比上一年增加12%,则该企业整年投入研发资金开始超出200万元年份是(),(参考数据:lg1.120.05,lg1.30.11,lg20.30),A年 B年,C年 D年,14/47,15/47,4等比数列,a,n,前,n,项和为,S,n,,若,S,3,3,S,2,0,则公比,q,_。,【解析】,S,3,3,S,2,0,,a,1,a,2,a,3,3(,a,1,a,2,)0,,a,1,(44,q,q,2,)0。,a,1,0,,q,2。,【答案】,2,16/47,5若等比数列,a,n,各项均为正数,且,a,10,a,11,a,9,a,12,2e,5,,则ln,a,1,ln,a,2,ln,a,20,_。,【解析】,解法一:各项均为正数等比数列,a,n,中,a,10,a,11,a,9,a,12,a,1,a,20,,,则,a,1,a,20,e,5,,,ln,a,1,ln,a,2,ln,a,20,ln(,a,1,a,20,),10,lne,50,50。,17/47,解法二:各项均为正数等比数列,a,n,中,a,10,a,11,a,9,a,12,a,1,a,20,,,则,a,1,a,20,e,5,,,设ln,a,1,ln,a,2,ln,a,20,S,,,则ln,a,20,ln,a,19,ln,a,1,S,,,2,S,20ln(,a,1,a,20,)100,,S,50。,【答案】,50,18/47,微考点大课堂,考点例析对点微练,19/47,考点一,等比数列基本运算,20/47,21/47,22/47,23/47,反思归纳,等比数列基本量运算是等比数列中一类基本问题,处理这类问题关键在于熟练掌握等比数列相关公式,并能灵活利用,尤其需要注意是,在使用等比数列前,n,项和公式时,应依据公比取值情况进行分类讨论,另外在运算过程中,还应善于利用整体代换思想简化运算。,24/47,25/47,26/47,【典例2】,(1)对任意等比数列,a,n,,以下说法一定正确是(),A,a,1,,,a,3,,,a,9,成等比数列,B,a,2,,,a,3,,,a,6,成等比数列,C,a,2,,,a,4,,,a,8,成等比数列,D,a,3,,,a,6,,,a,9,成等比数列,(2)已知数列,a,n,前,n,项和为,S,n,,,a,1,1,,S,n,1,4,a,n,2(,n,N,*,),若,b,n,a,n,1,2,a,n,,求证:,b,n,是等比数列。,考点二,等比数列判定与证实母题发散,27/47,28/47,【母题变式】,1.在本典例(2)条件下,求,a,n,通项公式。,29/47,30/47,反思归纳,(1)证实一个数列为等比数列惯用定义法或等比中项法,其它方法只用于选择题、填空题中判定;若证实某数列不是等比数列,则只要证实存在连续三项不成等比数列即可。,(2)利用递推关系时要注意对,n,1时情况进行验证。,31/47,32/47,33/47,【典例3】(1)公比为2等比数列,a,n,各项都是正数,且,a,3,a,11,16,则log,2,a,10,等于(),A4B5,C6D7,(2)各项均为正数等比数列,a,n,前,n,项和为,S,n,,若,S,n,2,,S,3,n,14,则,S,4,n,等于(),A80 B30,C26 D16,考点三,等比数列性质应用,34/47,35/47,反思归纳,等比数列性质应用能够分为三类:(1)通项公式变形;(2)等比中项变形;(3)前,n,项和公式变形。依据题目条件,认真分析,发觉详细改变特征即可找出处理问题突破口。,36/47,37/47,38/47,微考场新提升,考题选萃随堂自测,39/47,40/47,41/47,2中国古代数学著作算法统宗中有这么一个问题:“三百七十八里关,初步健步不为难,次日脚痛减二分之一,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有一个人走了378里路,第一天健步行走,第二天起脚痛天天走旅程为前一天二分之一,走了6天后抵达目标地”则该人最终一天走旅程为(),A24里 B12里,C6里 D3里,42/47,43/47,3已知数列,a,n,是递增等比数列,,a,1,a,4,9,,a,2,a,3,8,则数列,a,n,前,n,项和等于_。,44/47,4,(全国卷,),设等比数列,a,n,满足,a,1,a,3,10,,a,2,a,4,5,则,a,1,a,2,a,n,最大值为_。,45/47,46/47,47/47,
展开阅读全文