收藏 分销(赏)

初中数学公.doc

上传人:人****来 文档编号:9993717 上传时间:2025-04-16 格式:DOC 页数:37 大小:886.04KB 下载积分:12 金币
下载 相关 举报
初中数学公.doc_第1页
第1页 / 共37页
初中数学公.doc_第2页
第2页 / 共37页


点击查看更多>>
资源描述
初中数学公式正式版 公式分类 公式表达式 平方差 a2-b2=(a+b)(a-b) 和差的平方 (a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab 和差的立方 a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac>0 注:方程有一个实根 b2-4ac<0 注:方程有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 解析几何公式 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 几何图形公式 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c’*h 正棱锥侧面积 S=1/2c*h’ 正棱台侧面积 S=1/2(c+c’)h’ 圆台侧面积 S=1/2(c+c’)l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r (a是圆心角的弧度数r>0) 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 柱体体积公式 V=s*h 圆柱体 V=pi*r2h 斜棱柱体积 V=S’L (S’是直截面面积,L是侧棱长)  出自 初中数学公式与知识汇集 1. 2.a与b互为相反数a+b=0 a与b互为倒数ab=0 3.平方根 注:(1)只有非负数才有平方根,且0只有一个平方根,正数有两个平方根,且是互为相反数; (2)基本公式:; (3)平方根等于本身的只有0。 4.算术平方根 注:(1)只有非负数才有算术平方根,且0只有一个算术平方根,正数也是只有一个算术平方根; (2)基本公式:; (3)算术平方根等于本身的有0和1。 5.立方根 注:(1)任何实数都有立方根,并且只有一个。 (2)基本公式: (3)立方根等于本身的有 -1,0,1 6.幂的运算性质: 7.因式分解 8.分式:分母含有字母(变量,且不等于0)的式子叫做分式。 基本性质: 运算性质: 9.分式方程: 步骤:(1)找出最简公分母 (2)两边同时乘以最简公分母,解出解 (3)检验,把所求出的解带到最简公分母中,若它不等于0就是方程的解;若等于0,就不是方程的解,是增根 10.二次根式 (1)概念:式子叫做二次根式 (2) (3) 对二次根式的估值: (4)分子、分母有理化:应用“平方差公式”. ,. 11.一次方程:ax+b=0(a0),即对于ax+b=0不可以马上就认定是一次方程,若a=0,则b=0;若a0,则是一次方程,它只有一个解。 12.二元一次方程组:求解的方法是先消去一个未知数x或y(方法是:找出上下x或y的公分母,再使得x或y前面的系数变成公分母,再上下相加或相减即可)。 13.一元二次方程: (1) (2) (3)在应用求根公式的时候,该一元二次方程不一定有解(这里我们令) 即 (4)韦达定理: (5)已知一元二次方程的两个实数根,则该一元二次方程的表达式为 14.列方程(组)解应用题 (1)行程问题:路程=速度时间 相遇问题: 即 追及问题: 水中航行问题: 工程问题:工作量=工作效率时间,每个人的工作量之和等于工作总量(一般是单位“1”) 溶度问题:溶液质量=溶质质量+溶剂质量 溶质质量=溶液质量溶度 溶度= 增长率问题:增长后的量=原来的量+增长的量 增长的量=增长前的量(1+增长率) 15.函数及其图象 (1) (2)P(x,y)到x轴的距离是,到y轴的距离是,到原点的距离是. (3)正比例函数:y=kx(k0), (4)一次函数:y=kx+b(k0),注意写出x的取值范围。 当 k>0时,y随x的增大而增大(减小而减小),,当k<0时,y随x的增大而减小(减小而增大)。 图像: 两条直线的交点,即解由他们构成的方程组 其图像:方程组的解为 若两条直线平行,则;若,则重合。 (5)反比例函数(双曲线): (6)二次函数: 标准方程: a>0,开口向上,a<0,开口向下 对称轴: 顶点坐标:,即当时,函数值y取最大(小)值,为 小学数学常用图形周长面积体积计算公式: 1,正方形 C周长 S面积 a边长 周长=边长×4 面积=边长×边长 C=4a S=a×a S=a2 2,正方体 V体积 a棱长 表面积=棱长×棱长×6体积=棱长×棱长×棱长 S表=a×a×6 表=6a2 V=a×a×a V= a3 3,长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4,长方体 V体积 S面积 a长 b宽 h高 (1)表面积=(长×宽+长×高+宽×高)×2 (2)体积=长×宽×高 S=2(ab+ah+bh) V=abh 5,三角形 S面积 a底 h高 面积=底×高÷2 S=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6,平行四边形 S面积 a底 h高 面积=底×高 S=ah 7,梯形 S面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 S=(a+b)× h÷2 8,圆形 S面积 C周长 π圆周率 d直径 r半径 周长=直径×π 周长=2×π×半径 面积=半径×半径×π C=πd C=2πr S=πr2 d=C÷π d=2r r=d÷2 r=C÷2÷π S环=π(R2-r2) 9,圆柱体 V体积 h高 S底面积 r底面半径 C底面周长 侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 S侧=Ch S侧=πdh V=Sh V=πr2h 圆柱体积=侧面积÷2×半径 10,圆锥体 V体积 h高 S底面积 r底面半径 体积=底面积×高÷3 V=Sh÷3 长度单位换算   1千米=1000米;1米=10分米 1分米=10厘米;1米=100厘米 1厘米=10毫米 面积单位换算   1平方千米=100公顷;1公顷=10000平方米;1平方米=100平方分米 1平方分米=100平方厘米;1平方厘米=100平方毫米 1平方米=0.0015亩;1万平方米=15亩 1公顷=15亩=100公亩=10000平方米 1公亩等于100平方米 1(市)亩等于666.66平方米 体(容)积单位换算   1立方米=1000立方分米;1立方分米=1000立方厘米;1立方分米=1升 1立方厘米=1毫升;1立方米=1000升 重量单位换算 1吨=1000千克;1千克=1000克;1千克=1公斤 人民币单位换算 1元=10角;1角=10分;1元=100分 时间单位换算   1世纪=100年1年=12月 大月(31天)有:1\3\5\7\8\10\12月;小月(30天)的有:4\6\9\11月 平年2月28天,闰年2月29天;平年全年365天,闰年全年366天 1日=24小时1时=60分;1分=60秒1时=3600秒 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或小数+差=大数) 植树问题 1非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 小学定义定理公式(一) 三角形的面积=底×高÷2。公式S=a×h÷2 正方形的面积=边长×边长;公式S=a×a 长方形的面积=长×宽;公式S=a×b 平行四边形的面积=底×高;公式S=a×h 梯形的面积=(上底+下底)×高÷2;公式S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高;公式:V=abh 长方体(或正方体)的体积=底面积×高;公式:V=abh 正方体的体积=棱长×棱长×棱长;公式:V=aaa 圆的周长=直径×π;公式:L=πd=2πr 圆的面积=半径×半径×π;公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。 单位换算 (1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米 (2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米 (3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米 (4)1吨=1000千克1千克=1000克=1公斤=2市斤 (5)1公顷=10000平方米1亩=666.666平方米 1平方米=0.0015亩,1万平方米=15亩 (6)1升=1立方分米=1000毫升1毫升=1立方厘米 数量关系计算公式方面 1.单价×数量=总价 2.单产量×数量=总产量 3.速度×时间=路程 4.工效×时间=工作总量 小学数学定义定理公式(二) 一、算术方面 1.加法交换律:两数相加交换加数的位置,和不变。 2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3.乘法交换律:两数相乘,交换因数的位置,积不变。 4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。 6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。 7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8.方程式:含有未知数的等式叫方程式。 9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。 10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15.分数除以整数(0除外),等于分数乘以这个整数的倒数。 16.真分数:分子比分母小的分数叫做真分数。 17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18.带分数:把假分数写成整数和真分数的形式,叫做带分数。 19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20.一个数除以分数,等于这个数乘以分数的倒数。 21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。 数学定义: 一、长度 (一) 什么是长度 长度是一维空间的度量。   (二) 长度常用单位 * 公里(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) * 微米(um) (三) 单位之间的换算 * 1毫米 =1000微米 * 1厘米 =10 毫米 * 1分米 =10 厘米 * 1米 =1000 毫米 * 1千米 =1000 米 二、面积 (一)什么是面积 面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。 (二)常用的面积单位 * 平方毫米 * 平方厘米 * 平方分米 * 平方米 * 平方千米 (三)面积单位的换算 * 1平方厘米 =100 平方毫米 * 1平方分米=100平方厘米 * 1平方米 =100 平方分米 * 1公倾 =10000 平方米 * 1平方公里 =100 公顷 三、体积和容积 (一)什么是体积、容积 体积,就是物体所占空间的大小。 容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。 (二)常用单位 1 体积单位 * 立方米 * 立方分米 * 立方厘米 2 容积单位 * 升 * 毫升 (三)单位换算 1 体积单位 * 1立方米=1000立方分米 ;* 1立方分米=1000立方厘米 2 容积单位 * 1升=1000毫升;* 1升=1立方米 ;* 1毫升=1立方厘米 四、质量 (一)什么是质量 质量,就是表示表示物体有多重。 (二)常用单位 * 吨 t * 千克 kg * 克 g (三)常用换算 * 一吨=1000千克 ;* 1千克=1000克 五、时间 (一)什么是时间 是指有起点和终点的一段时间 (二)常用单位 世纪、 年 、 月 、 日 、 时 、 分、 秒 (三)单位换算 * 1世纪=100年 ;* 1年=365天 平年 ;* 一年=366天 闰年 * 一、三、五、七、八、十、十二是大月 大月有31 天 * 四、六、九、十一是小月小月 小月有30天 * 平年2月有28天 闰年2月有29天 * 1天= 24小时 * 1小时=60分 * 一分=60秒 六、货币 (一)什么是货币 货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。 小学数学常用图形周长面积体积计算公式: 1,正方形 C周长 S面积 a边长 周长=边长×4 面积=边长×边长 C=4a S=a×a S=a2 2,正方体 V体积 a棱长 表面积=棱长×棱长×6体积=棱长×棱长×棱长 S表=a×a×6 表=6a2 V=a×a×a V= a3 3,长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4,长方体 V体积 S面积 a长 b宽 h高 (1)表面积=(长×宽+长×高+宽×高)×2 (2)体积=长×宽×高 S=2(ab+ah+bh) V=abh 5,三角形 S面积 a底 h高 面积=底×高÷2 S=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6,平行四边形 S面积 a底 h高 面积=底×高 S=ah 7,梯形 S面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 S=(a+b)× h÷2 8,圆形 S面积 C周长 π圆周率 d直径 r半径 周长=直径×π 周长=2×π×半径 面积=半径×半径×π C=πd C=2πr S=πr2 d=C÷π d=2r r=d÷2 r=C÷2÷π S环=π(R2-r2) 9,圆柱体 V体积 h高 S底面积 r底面半径 C底面周长 侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 S侧=Ch S侧=πdh V=Sh V=πr2h 圆柱体积=侧面积÷2×半径 10,圆锥体 V体积 h高 S底面积 r底面半径 体积=底面积×高÷3 V=Sh÷3 长度单位换算   1千米=1000米;1米=10分米 1分米=10厘米;1米=100厘米 1厘米=10毫米 面积单位换算   1平方千米=100公顷;1公顷=10000平方米;1平方米=100平方分米 1平方分米=100平方厘米;1平方厘米=100平方毫米 1平方米=0.0015亩;1万平方米=15亩 1公顷=15亩=100公亩=10000平方米 1公亩等于100平方米 1(市)亩等于666.66平方米 体(容)积单位换算   1立方米=1000立方分米;1立方分米=1000立方厘米;1立方分米=1升 1立方厘米=1毫升;1立方米=1000升 重量单位换算   1吨=1000千克;1千克=1000克;1千克=1公斤 人民币单位换算 1元=10角;1角=10分;1元=100分 时间单位换算   1世纪=100年1年=12月 大月(31天)有:1\3\5\7\8\10\12月;小月(30天)的有:4\6\9\11月 平年2月28天,闰年2月29天;平年全年365天,闰年全年366天 1日=24小时1时=60分;1分=60秒1时=3600秒 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或小数+差=大数) 植树问题 1非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 小学定义定理公式(一) 三角形的面积=底×高÷2。公式S=a×h÷2 正方形的面积=边长×边长;公式S=a×a 长方形的面积=长×宽;公式S=a×b 平行四边形的面积=底×高;公式S=a×h 梯形的面积=(上底+下底)×高÷2;公式S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高;公式:V=abh 长方体(或正方体)的体积=底面积×高;公式:V=abh 正方体的体积=棱长×棱长×棱长;公式:V=aaa 圆的周长=直径×π;公式:L=πd=2πr 圆的面积=半径×半径×π;公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。 单位换算 (1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米 (2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米 (3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米 (4)1吨=1000千克1千克=1000克=1公斤=2市斤 (5)1公顷=10000平方米1亩=666.666平方米 1平方米=0.0015亩,1万平方米=15亩 (6)1升=1立方分米=1000毫升1毫升=1立方厘米 数量关系计算公式方面 1.单价×数量=总价 2.单产量×数量=总产量 3.速度×时间=路程 4.工效×时间=工作总量 小学数学定义定理公式(二) 一、算术方面 1.加法交换律:两数相加交换加数的位置,和不变。 2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3.乘法交换律:两数相乘,交换因数的位置,积不变。 4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。 6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。 7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8.方程式:含有未知数的等式叫方程式。 9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。 10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15.分数除以整数(0除外),等于分数乘以这个整数的倒数。 16.真分数:分子比分母小的分数叫做真分数。 17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18.带分数:把假分数写成整数和真分数的形式,叫做带分数。 19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20.一个数除以分数,等于这个数乘以分数的倒数。 21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。 数学定义: 一、长度 (一) 什么是长度 长度是一维空间的度量。   (二) 长度常用单位 * 公里(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) * 微米(um) (三) 单位之间的换算 * 1毫米 =1000微米 * 1厘米 =10 毫米 * 1分米 =10 厘米 * 1米 =1000 毫米 * 1千米 =1000 米 二、面积 (一)什么是面积 面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。 (二)常用的面积单位 * 平方毫米 * 平方厘米 * 平方分米 * 平方米 * 平方千米 (三)面积单位的换算 * 1平方厘米 =100 平方毫米 * 1平方分米=100平方厘米 * 1平方米 =100 平方分米 * 1公倾 =10000 平方米 * 1平方公里 =100 公顷 三、体积和容积 (一)什么是体积、容积 体积,就是物体所占空间的大小。 容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。 (二)常用单位 1 体积单位 * 立方米 * 立方分米 * 立方厘米 2 容积单位 * 升 * 毫升 (三)单位换算 1 体积单位 * 1立方米=1000立方分米 ;* 1立方分米=1000立方厘米 2 容积单位 * 1升=1000毫升;* 1升=1立方米 ;* 1毫升=1立方厘米 四、质量 (一)什么是质量 质量,就是表示表示物体有多重。 (二)常用单位 * 吨 t * 千克 kg * 克 g (三)常用换算 * 一吨=1000千克 ;* 1千克=1000克 五、时间 (一)什么是时间 是指有起点和终点的一段时间 (二)常用单位 世纪、 年 、 月 、 日 、 时 、 分、 秒 (三)单位换算 * 1世纪=100年 ;* 1年=365天 平年 ;* 一年=366天 闰年 * 一、三、五、七、八、十、十二是大月 大月有31 天 * 四、六、九、十一是小月小月 小月有30天 * 平年2月有28天 闰年2月有29天 * 1天= 24小时 * 1小时=60分 * 一分=60秒
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服