资源描述
2022年人教版九年级数学上册期末考试卷(A4版)
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.-2的倒数是( )
A.-2 B. C. D.2
2.已知则的大小关系是( )
A. B. C. D.
3.如果a与1互为相反数,则|a+2|等于( )
A.2 B.-2 C.1 D.-1
4.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是
A.平均数 B.中位数 C.众数 D.方差
5.已知是二元一次方程组的解,则的值为( )
A.-1 B.1 C.2 D.3
6.面积为4的正方形的边长是( )
A.4的平方根 B.4的算术平方根
C.4开平方的结果 D.4的立方根
7.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )
A.15 B.18 C.21 D.24
8.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是( )
A. ﹣3<x<2 B.x<﹣3或x>2
C.﹣3<x<0或x>2 D.0<x<2
9.如图,在平面直角坐标系中,点在第一象限,⊙P与x轴、y轴都相切,且经过矩形的顶点C,与BC相交于点D,若⊙P的半径为5,点的坐标是,则点D的坐标是( )
A. B. C. D.
10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )
A.4个 B.3个 C.2个 D.1个
二、填空题(本大题共6小题,每小题3分,共18分)
1.计算:=__________.
2.分解因式:___________.
3.将二次函数化成的形式为__________.
4.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为__________.
5.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x+m的解集为__________.
6.菱形的两条对角线长分别是方程的两实根,则菱形的面积为__________.
三、解答题(本大题共6小题,共72分)
1.解方程:=1
2.已知关于x的一元二次方程x2+x+m﹣1=0.
(1)当m=0时,求方程的实数根.
(2)若方程有两个不相等的实数根,求实数m的取值范围.
3.如图,在Rt△ABC中,,AD平分∠BAC,交BC于点D,点O在AB上,⊙O经过A、D两点,交AC于点E,交AB于点F.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径是2cm,E是弧AD的中点,求阴影部分的面积(结果保留π和根号)
4.如图,AB是⊙O的直径,C是的中点,CE⊥AB于 E,BD交CE于点F.
(1)求证:CF﹦BF;
(2)若CD﹦6, AC﹦8,则⊙O的半径和CE的长.
5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.
(1)求条形图中被遮盖的数,并写出册数的中位数;
(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;
(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.
6.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.
(1)直接写出书店销售该科幻小说时每天的销售量(本)与销售单价(元)之间的函数关系式及自变量的取值范围.
(2)书店决定每销售1本该科幻小说,就捐赠元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求的值.
参考答案
一、选择题(本大题共10小题,每题3分,共30分)
1、B
2、A
3、C
4、D
5、A
6、B
7、A
8、C
9、A
10、B
二、填空题(本大题共6小题,每小题3分,共18分)
1、4
2、ab(a+b)(a﹣b).
3、
4、140°
5、x<1或x>3
6、24
三、解答题(本大题共6小题,共72分)
1、x=1
2、(1)x1=,x2=(2)m<
3、(1)略 (2)
4、(1)略
(2)5 ,
5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为;(3)3
6、(1);(2).
6 / 6
展开阅读全文