资源描述
2012-2021北京中考真题数学汇编
一元二次方程
一、填空题
1.(2012·北京·中考真题)若关于的方程有两个相等的实数根,则的值是______.
2.(2015·北京·中考真题)关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=________,b=________.
3.(2020·北京·中考真题)已知关于的方程有两个相等的实数根,则的值是______.
二、解答题
4.(2013·北京·中考真题)已知关于的一元二次方程有两个不相等的实数根
(1)求的取值范围;
(2)若为正整数,且该方程的根都是整数,求的值.
5.(2014·北京·中考真题)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).
(1)求证:方程总有两个实数根;
(2)若方程的两个实数根都是整数,求正整数m的值.
6.(2016·北京·中考真题)关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根.
(1)求m的取值范围;
(2)写出一个满足条件的m的值,并求此时方程的根.
7.(2018·北京·中考真题)关于x的一元二次方程ax2+bx+1=0.
(1)当b=a+2时,利用根的判别式判断方程根的情况;
(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.
8.(2017·北京·中考真题)已知关于x的方程
(1)求证:方程总有两个实数根
(2)若方程有一个小于1的正根,求实数k的取值范围
9.(2021·北京·中考真题)已知关于的一元二次方程.
(1)求证:该方程总有两个实数根;
(2)若,且该方程的两个实数根的差为2,求的值.
10.(2019·北京·中考真题)关于x的方程有实数根,且m为正整数,求m的值及此时方程的根.
参考答案
1.-1
【分析】
根据方程有两个相等的实数根,判断出根的判别式为0,据此求出m的值即可.
【详解】
解:∵关于x的方程x2-2x-m=0有两个相等的实数根,∴△=0,
∴(-2)2-4×1×(-m)=0,解得m=-1.
故答案为:-1.
【点睛】
本题考查一元二次方程根的判别式.
2. 4 2
【详解】
解:∵关于x的一元二次方程ax2+bx+=0有两个相等的实数根,
∴
∴b2-a=0,
∴a=b2,
当b=2时,a=4, 故b=2,a=4时满足条件.
故答案为4,2(答案不唯一)
3.1
【分析】
由一元二次方程根的判别式列方程可得答案.
【详解】
解:一元二次方程有两个相等的实数根,
可得判别式△=0,
∴,
解得:.
故答案为:
【点睛】
本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.
4.(1)k<(2)2
【分析】
(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围.
(2)找出k范围中的整数解确定出k的值,经检验即可得到满足题意k的值.
【详解】
解:(1)∵关于的一元二次方程有两个不相等的实数根,
∴.
解得:k<.
(2)∵k为k<的正整数,
∴k=1或2.
当k=1时,方程为,两根为,非整数,不合题意;
当k=2时,方程为,两根为或,都是整数,符合题意.
∴k的值为2.
5.(1)证明见解析;(2)正整数m的值为1或2.
【分析】
(1)先计算判别式的值得到△=(m+2)2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;
(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m的值.
【详解】
(1)证明:∵m≠0,
△=(m+2)2﹣4m×2
=m2﹣4m+4
=(m﹣2)2,
而(m﹣2)2≥0,即△≥0,
∴方程总有两个实数根;
(2)解:(x﹣1)(mx﹣2)=0,
x﹣1=0或mx﹣2=0,
∴x1=1,x2=,
当m为正整数1或2时,x2为整数,
即方程的两个实数根都是整数,
∴正整数m的值为1或2.
6.(1)m>-;(2)x1=0,x2=-3.
【详解】
试题分析:(1)由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于m的一元一次不等式,解不等式即可得出结论;
(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论.
试题解析:(1)∵关于x的一元二次方程+(2m+1)x+﹣1=0有两个不相等的实数根,
∴△==4m+5>0,
解得:m>;
(2)m=1,此时原方程为+3x=0,
即x(x+3)=0,
解得:=0,=﹣3.
考点:根的判别式;解一元二次方程——因式分解法;解一元一次不等式.
7.(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x1=x2=﹣1.
【详解】
分析:(1)求出根的判别式,判断其范围,即可判断方程根的情况.
(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.
详解:(1)解:由题意:.
∵,
∴原方程有两个不相等的实数根.
(2)答案不唯一,满足()即可,例如:
解:令,,则原方程为,
解得:.
点睛:考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
8.(1)证明见解析;(2)
【分析】
(1)证出根的判别式即可完成;
(2)将k视为数,求出方程的两个根,即可求出k的取值范围.
【详解】
(1)证明:
∴方程总有两个实数根
(2)
∴
∴
∵方程有一个小于1的正根
∴
∴
【点睛】
本题考查一元二次方程根的判别式与方程的根之间的关系,熟练掌握相关知识点是解题关键.
9.(1)见详解;(2)
【分析】
(1)由题意及一元二次方程根的判别式可直接进行求证;
(2)设关于的一元二次方程的两实数根为,然后根据一元二次方程根与系数的关系可得,进而可得,最后利用完全平方公式代入求解即可.
【详解】
(1)证明:由题意得:,
∴,
∵,
∴,
∴该方程总有两个实数根;
(2)解:设关于的一元二次方程的两实数根为,则有:,
∵,
∴,
解得:,
∵,
∴.
【点睛】
本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.
10.,此时方程的根为
【分析】
直接利用根的判别式≥0得出m的取值范围进而解方程得出答案.
【详解】
解:∵关于x的方程x2-2x+2m-1=0有实数根,
∴b2-4ac=4-4(2m-1)≥0,
解得:m≤1,
∵m为正整数,
∴m=1,
∴此时二次方程为:x2-2x+1=0,
则(x-1)2=0,
解得:x1=x2=1.
【点睛】
此题主要考查了根的判别式,正确得出m的值是解题关键.
6 / 6
展开阅读全文