资源描述
························装·······················订························密························封························线·························
大学:_____________ 年级:____________ 专业:____________________ 姓名:_______________ 学号:________________
························阅·······················卷························密························封························线·························
《概率统计》试卷(C)
(110分钟)
题 号
一
二
三
四
五
六
总 分
得 分
阅卷人
得 分
阅卷人
一、求下列问题的概率(第一、二小题各8分,第三、
四小题各12分,共40分)
1、从由数字1,2,3,4,5组成的所有没有重复数字的5位数中随机抽取一个,求这个数大于23000且小于43000的概率.
2、从装有4个红球,3个白球的袋中随机取出3个球,求其中恰有2个红球1个白球的概率.
3、一批产品的次品率是0.1%,(1)用二项分布计算1000件这种产品种次品数大于2的概率;(2)用普阿松定理计算1000件这种产品种次品数大于2的概率.
4、某地区暴雨天气的概率为0.4%,某气象台对该地区暴雨天气的准确预报率为95%,但也会有2.5%的非暴雨天气被误报为暴雨;
(1)(6分)随机抽取该气象台对该地区的一次预报,求预报为暴雨天气的概率;
(2)(6分)该气象台对该地区的一次预报为暴雨,求该地区真正为暴雨天气的概率.
得 分
阅卷人
二、(满分12分)
························装·······················订························密························封························线·························
大学:_____________ 年级:____________ 专业:____________________ 姓名:_______________ 学号:________________
························阅·······················卷························密························封························线·························
抛掷三次质地均匀的硬币,以X表示出现正面的次数,以Y表示正面出现次数与反面出现次数之差的绝对值.
(1)(6分) 求(X,Y)的联合分布;
(2)(6分) 求X与Y的边际分布列;讨论X与Y的独立性。
得 分
阅卷人
三、(满分14分)
设随机变量X的概率密度函数为
(1)(4分) 求常数;
(2)(6分) 求X的分布函数;
(3)(4分) 计算
得 分
阅卷人
四、(满分12分)
························装·······················订························密························封························线·························
大学:_____________ 年级:____________ 专业:____________________ 姓名:_______________ 学号:________________
························阅·······················卷························密························封························线·························
设随机变量X的概率密度为
求:(1)(6分) 求;
(2)(6分) 求的概率密度
得 分
阅卷人
五、(满分12分)
设二维随机变量的概率密度为
求(1)(6分);
(2)(6分),的边缘密度函数.
得 分
阅卷人
六、(满分10分)
························装·······················订························密························封························线·························
大学:_____________ 年级:____________ 专业:____________________ 姓名:_______________ 学号:________________
························阅·······················卷························密························封························线·························
若为常数,随机变量的密度函数
证明:对任意,都有.
(共8页) 第7页 (共8页) 第8页
展开阅读全文