资源描述
一元二次方程定义与解法的复习
教学设计
张汴学校 阴江华
2016年9月
一元二次方程定义与解法的复习
一、本章知识结构框图
二、本章知识点概括
1、相关概念
(1)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
(2)一元二次方程的一般形式:ax2+bx+c=0(a≠0),
其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
(3)一元二次方程的根:一元二次方程的解也叫一元二次方程的根。
用“夹逼”法估算出一元二次方程的根的取值范围.
一次方程:一元一次方程,二元一次方程,三元方程
整式方程 二次方程:一元二次方程,二元二次方程
*(4)有理方程 高次方程:
分式方程
2、降次——解一元二次方程
(1) 配方法:通过配成完全平方形式来解一元二次方程的方法,叫配方法.
配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.其步骤是:
①方程化为一般形式;
②移项,使方程左边为二次项和一次项,右边为常数项;
③化二次项系数为1;
④配方,方程两边都加上一次项系数一半的平方,使方程左边是完全平方式,
从而原方程化为(mx+n)2=p的形式;
⑤如果p≥0就可以用开平方降次来求出方程的解了,如果p<0,则原方程无实数根。
(2)公式法:利用求根公式解一元二次方程的方法叫公式法.
其方法为:先将一元二次方程化为一般形式ax2+bx+c=0,当⊿=b2-4ac≥0时,
将a、b、c代入求根公式x=(b2-4ac≥0)就得到方程的根.
(3)分解因式法:先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而降次.这种解法叫做因式分解法.步骤是:
①通过移项将方程右边化为0;
②通过因式分解将方程左边化为两个一次因式乘积;
③令每个因式等于0,得到两个一元一次方程;
④解这两个一元一次方程,得一元二次方程的解。
3、一元二次方程根的判别式
(1)⊿=b2-4ac叫一元二次方程ax2+bx+c=0(a≠0)的根的判别式。
(2)运用根的判别式,在不解方程的前提下判别根的情况:
①⊿=b2-4ac >0 方程有两个不相等实数根;
②⊿=b2-4ac =0 方程有两个相等实数根;
③⊿=b2-4ac <0 方程没有实数根;
④⊿=b2-4ac ≥0 方程有两个实数根。
(3)应用:
①不解方程,判别方程根的情况;
②已知方程根的情况确定方程中字母系数的取值范围;
③应用判别式证明方程的根的状况(常用到配方法);
注意:运用根的判别式的前提是该方程是一元二次方程,即:a≠0。
*4、一元二次方程根与系数的关系(本部分内容为选学内容)
(1)如果一元二次方程ax2+bx+c=0(a≠0)的两个实数根是,
那么
(2)应用:
①验根,不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根;
②已知方程的一个根,求另一根及未知系数的值;
③已知方程的两根满足某种关系,求方程中字母系数的值或取值范围;
④不解方程可以求某些关于的对称式的值,通常利用到:
当=0且≤0,两根互为相反数;
当⊿≥0且=1,两根互为倒数。
(重点强调:一元二次方程根与系数的关系是在二次项系数a≠0,⊿≥0前提条件下应用的,解题中一定要注意检验)
⑩用公式法因式分解二次三项式ax2+bx+c(a≠0):
ax2+bx+c=a(x-x1)(x-x2)其中是方程ax2+bx+c=0(a≠0)的两个实数根。
三、典型例题辨析
1、在下列方程中,是一元二次方程的有________个.
①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-=0
2、当m 时,关于x的方程(m+2)x|m|+3mx+1=0是一元二次方程.
3、方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.
4、根据下列表格的对应值:
x
3.23
3.24
3.25
3.26
ax2+bx+c
-0.06
-0.02
0.03
0.09
判断关于x的方程ax2+bx+c=0(a≠0)的
一个根x的取值范围是________。
5、已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.
6、已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,则这个三角形的周长是_____.
7、已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是_____.
8、已知2和是关于的方程的两个根,则的值为 ,的值为 .
9、已知方程的两根为,则的值为 。
10、一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共_____人.
11、一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为_______.
12、解下列方程:
⑴ ⑵
⑶ ⑷
13、若关于的一元二次方程有两个实数根,求的取值范围.
14、已知方程x2+(2k+1)x+k2-2=0的两实根的平方和等于11,求k的值。
15、k为何值时,方程x2-(k+1)x+(k-2)=0
(1)两根互为相反数;(2)两根互为倒数;(3)有一根为零,另一根不为零.
作业:必做:P23:1-10 选做:P24:11、12
教学反思:
展开阅读全文