资源描述
让自己的进步每天看得见 福州学大教育杨桥学习中心
1、已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
2、如图①,已知△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.
(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论.
(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.
(3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.
3、如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连结BP,将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连结AA1,射线AA1分别交射线PB、射线B1B于点E、F.
(1)如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在相似关系,请说明理由;
(2)如图2,设∠ABP=β,当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;
(3)如图3,当α=60°时,点E、F与点B重合.已知AB=4,设DP=x,△A1BB1的面积为S,求S关于x的函数关系式.
图1
A
B
C
F
D
P
E
A1
B1
图3
A
B
C
D
P
A1
B1
图2
A
B
C
F
D
P
E
A1
B1
4、在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.
(1)如图1,当AB∥CB′ 时,设A′B′ 与CB相交于点D.证明:△A′CD是等边三角形;
(2)如图2,连接A′A、B′B,设△ACA′ 和△BCB′ 的面积分别为S△ACA′ 和S△BCB′ .
求证:S△ACA′ : S△BCB′ =1 : 3;
(3)如图3,设AC中点为E,A′B′ 中点为P,AC=a,连接EP,当θ=__________°时,EP长度最大,最大值为__________.
A
B
C
A′
B′
θ
图2
A
B
C
A′
B′
θ
图3
E
P
A
B
C
D
A′
B′
θ
图1
3
展开阅读全文