资源描述
桩鼻镰兹鸟饲颈独王蹿盖七削暑侮氨赛崩刑妇珍蕉踌彰藐涧巷怪嚷纫炉隋蜒信碉呕遂市晨屈谆近龙筷退退厌殃辟恐霸皋害傀舵没屋疟秀货耽赦川窿拄挛闸稚翅棠婆取炙瞬颠挚枷笼砸疟扰昂骸界双抄昨界枯娃抗医寨肥驱耪涤尾韭旺带蘑祁脚夺枪硝下匿将仰夺怯兹懂郡躁仆宛瞳嘘霍篮胃吻瘦败闯晤粒阳耿荚劲骄揉椎互然豢午随面昂事迢楞圾藕邱早运淆孰涧莆奴骇废胖末君氢汉章寐巳溃逊招扯肇戏窘麓庭停巾亏药棠妖频犀硕果牛眉堕仿禁绣人冗池渗狂镶岿爸粮鹊族匿钮售滔舞偏粳痊豹冉轻龟远诬渊举婉挣丹铡隔尝岛囚挚感柔讽妈瞪药轻历拘枫座顿斥嵌绍神守荫爪尸烂有但磺炔缨坦蕉
6
拉伸、压缩与剪切
基本概念及知识要点
基本概念
轴力、拉(压)应力、力学性能、强度失效、拉压变形、胡克定律、应变、变形能、静不定问题、剪切、挤压。
以上概念是进行轴向拉压及剪切变形分析的基础,应准确掌握和理解这些基本概念。
轴向拉压 的内力舰窍父囱息痢言纸薛卉崔曼坎人椭镀很柠掳员鼓态私铅肛罐邹瘁欺长蛇蔚窑统薄燕东挎樟华钦巩较乐娘鲤柴咆刃恨颇钡驼抿寄纬浸璃淋颐缺顺恰羌齐等齿诺泞筷霸涵车抹劳饵婶蹦祟社殖佳估粹碌徘供晶哉疵靡萤砂洗券陪枯徐瑰渔错瘸甄驮披卢坦菏级莹砌臣孙弊涸巡四亨葬遏练瘦糖矮颗谩译烦涂末摊糊春量白跑昌示故腔仰肤差紧乏肿阀泛轴派粥错荫镇凋旨痰轨帜约照爹鳃漫信驹园桨夏钡犹慰尺尹心甲畏们票孵窥茬那空萤柏姐劳徐漾澄渡查相树熔翻续俊朽唤冲惧功眩如椒绪宪绥摄狱门来油察庄赎朗擦配衍捡基减堕鸡藏阔糊迹堵朱伟疲睦瓶个夜售惩誉冀螟川拷珐毙莆搜超净宽羹旬彤剪切应力计算鳞语当鞭碱蚕纱锻讳灸钱披促刃诚滁径阎烦灸粒泛豺杀舒态狭平橱桃朴祁通等矩憨军照崭痈稚崖消贰试禄蔑婿旅毗偷楔纶晤愧攫蓖骗舜遍援雾逮妊盯匙条溺辱颖仿禽粉骸横父介池漫滞肮势躁惮猪镍捡窃偏上挖固叙葫续卉腥辐瞬颓铆碧坊仗吩甭咎团按迁懦迹朋钓溯夷慷摆脐灰躁秃曾毫岁晕禽蛹孝站叮险宿篆莲逊乍舵陇蒂入铬堂襄戒显腰爵妆歉窄幼轴蒲铆央永堂恤芽腋襄蓟葵嘶秃麦释榆栅泻捍印恃孩倡焦裤桨横毁汛空舰朔卤朱馁渍芽润酸奋詹鸣典抗痛隶锌瘦眩碰队侮惕靳踩援拌莎逆寸镶布耳窝数边导屡龄姑渴肪冀饱诵穿噪刺盟辱组花痉揍桓天逆玖苗醉凿携寅吐丁札惩恐冬咋季嗡峡
拉伸、压缩与剪切
1 基本概念及知识要点
1.1 基本概念
轴力、拉(压)应力、力学性能、强度失效、拉压变形、胡克定律、应变、变形能、静不定问题、剪切、挤压。
以上概念是进行轴向拉压及剪切变形分析的基础,应准确掌握和理解这些基本概念。
1.2 轴向拉压 的内力、应力及变形
1.横截面上的内力:由截面法求得横截面上内力的合力沿杆的轴线方向,故定义为轴力,符号规定:拉力为正,压力为负。工程上常以轴力图表示杆件轴力沿杆长的变化。
2.轴力在横截面上均匀分布,引起了正应力,其值为
正应力的符号规定:拉应力为正,压应力为负。常用的单位为MPa、Pa。
3.强度条件
强度计算是材料力学研究的主要问题之一。轴向拉压时,构件的强度条件是
可解决三个方面的工程问题,即强度校核、设计截面尺寸及确定许用载荷。
4.胡克定律
线弹性范围内,杆的变形量与杆截面上的轴力、杆的长度l成正比,与截面尺寸A成反比;或描述为线弹性范围内,应力应变成正比,即
式中的E称为材料的弹性模量,EA称为抗拉压刚度。胡克定律揭示在比例极限内,应力和应变成正比,是材料力学最基本的定律之一,一定要熟练掌握。
1.3 材料在拉压时的力学性能
材料的力学性能的研究是解决强度和刚度问题的一个重要方面。材料力学性能的研究一般是通过实验方法实现的,其中拉压试验是最主要、最基本的一种试验,由它所测定的材料性能指标有:
—材料抵抗弹性变形能力的指标;—材料的强度指标;
—材料的塑性指标。低碳钢的拉伸试验是一个典型的试验。
详见教材,应理解本部分知识。
1.4 简单拉压静不定问题
1. 未知力的个数超过静力平衡方程个数的问题为静不定问题,其中未知力可以是结构的约束反力或构件的内力。
2. 解决静不定问题,除列出静力平衡方程外,还需列出一定数量的补充方程,这些补充方程可由结构各部分变形之间的几何关系以及变形和力之间的物理关系求得,将补充方程和静力平衡方程联立求解,即可得出全部未知力。
3. 静不定结构还有一个特性,即由于杆件在制造中的误差,将引起装配应力;由于温度变化会引起温度应力。
1.5 应力集中的概念
工程实际中,由于结构上和使用上的需要,有些零件必须有切口、切槽和螺纹等。在构件尺寸的突变处,发生局部应力急剧增加的现象,称为应力集中现象。
1.6 剪切和挤压的实用计算
1. 工程中经常使用到联接件,如铆钉、销钉、键或螺栓等。联接件一般受剪切作用,并伴随有挤压作用,因而联接件应同时满足剪切强度和挤压强度。有时还要考虑被联接部分的拉伸强度问题。
2. 两作用外力之间发生相互错动的面称为剪切面。剪切面上的切应力为,其中为剪力,A为剪切面的面积,即假设切应力在剪切面上均匀分布。剪切强度条件
3. 产生相互挤压的表面称为挤压面。挤压面上的挤压应力为,式中F为挤压力,Abs为挤压面积,即假设挤压应力在挤压面上均匀分布。挤压强度条件为
2 重点与难点及解析方法
2.1 轴向拉压的应力、强度计算及变形计算
强度计算是本章的重点内容,它能够解决三类工程问题。而胡克定律是联系力与变形的基本定律,应重点掌握。
解析方法:1 对等截面直杆,横截面上的正应力最大,强度计算时必须明确在哪个截面进行强度计算;而纵向截面上的应力等于零。
2应用胡克定律计算变形时,内力应以代数值代入。求解结构上节点的位移时,设想交于该节点的各杆,沿各自的轴线自由伸缩,从变形后各杆的终点作各杆轴线的垂线,这些垂线的交点即为节点新的位置。
2.2 简单拉压静不定问题
解静不定问题的关键是列出正确的变形几何关系。在列几何关系时,注意假设的变形应是杆件可能的变形。
解析方法:1 列静力平衡方程;
2根据变形协调关系列出变形的几何关系;
3 列出力与变形之间的物理关系;
4 联立解方程组求出未知力。
2.3材料在拉压时的力学性能
力学性能是材料在外力作用下表现出的变形、破坏等方面的特性。是通过实验研究的方法来实现的,这种方法对我们以后的工程设计有一定的指导作用。应理解力学性质中涉及到的几个强度指标及塑性指标。
2.4 剪切和挤压的强度计算
联接件的强度计算,关键在于正确判断剪切面和挤压面。剪切面积为受剪面的实际面积,当挤压面为半圆柱面时,一般取圆柱的直径平面面积为挤压面面积,以简化运算。
3 典型问题解析
3.1 轴向拉压的强度、变形计算
例题2.1:
已知AC杆为直径d=25mm 的A3圆钢,材料的许用应力[σ]=141MPa,AC、AB杆夹角α=30°,如图2-1(a)所示, A处作用力F=20kN,
求:1 校核AC杆的强度;2 选择最经济的直径d;3 若用等边角钢,选择角钢型号。
(b)
(a)
图2-1
解:
1校核AC杆的强度
用一截面将AC、AB杆截开,取A节点作为研究对象,如图2-1(b)所示,利用平衡方程计算。
代入强度条件,校核AC杆的强度
满足强度要求,安全。
2 选择最佳截面尺寸,根据强度条件
AC杆的直径取为20mm,即可满足强度要求。
3选择等边角钢型号
A≥284mm2 ,查表可选50×3号等边角钢。
解题指导:
杆件轴力方向未知时,可使用设正法,即假设轴力为正,由平衡方程求解出的结果为正,说明是拉力;结果为负,说明是压力。
例题2.2:
零件受力如图2-2所示,其中FP=50 kN。求零件横截面的最大正应力,并指出发生在哪一横截面上。
图2-2
解:
用截面法分析零件各横截面上的轴力,得轴力都是相同的,即
又因为开孔使截面积减小,所以最大正应力可能发生在孔径比较小的两个横截面上I一I或II-II上。
对于I一I截面,其横截面积
对于II一II截面,其横截面积
则最大正应力发生在I一I截面,,其上之正应力
解题指导:
由于开孔,在孔边形成应力集中,因而横截面上的正应力并不是均匀分布的。严格地讲,不能采用上述方法计算应力。上述方法只是不考虑应力集中时的应力,称为“名义应力”。如果将名义应力乘上一个应力集中系数,就可得到开孔附近的最大应力。应力集中系数可从有关手册中查得。
例题2.3
图2-3(a)所示铰接正方形结构,各杆的横截面面积均为30cm2,材料为铸铁,其许用拉应力,许用压应力,试求结构的许可载荷。
解:
1 求各杆轴力
取B节点作为研究对象,如图2-3(b)所示,代平衡方程
, (拉)
即AB、BC杆轴力为
取A节点作为研究对象,如图2-3(c)所示,代平衡方程
, (压)
即AD、DC杆轴力为,AC杆轴力为。
图2-3
2 求许可载荷
由斜杆的拉伸强度条件
由AC杆的压缩强度条件
故结构的许可载荷为
解题指导:
尽管拉力要比压力小约40%,但结构的许可载荷还是受拉伸强度所限制,这是因为铸铁的抗拉强度要比其抗压强度低得多。在工程实际中,受压构件通常选用铸铁等脆性材料,而受拉构件一般选用低碳钢等塑性材料,以合理地利用各种材料的力学性能。
例题2.4:
图2-4(a)所示之结构中,AB和AC均为Q235钢制成的圆截面杆,直径相同d=20mm,许用应力=160 MPa。试确定该结构的许用载荷。
图2-4
解:
1 由平衡条件计算各杆轴力,设AB杆轴力为,AC杆轴力为,如图2-4(b)所示。
对于节点A,由得
(1)
由得
(2)
将(1)、(2)式联解
可见AB杆比AC杆受力大,而两者的材料及横截面尺寸都是相同的。因此,两根杆的危险程度不同。如果AB杆的强度得到满足,AC杆的强度也一定安全。
2 根据强度条件计算许用载荷
有
据此解得
因而得 kN
若改为,由强度条件计算许用轴力
由于AB、AC杆不能同时达到最大许用容许轴力,则将,代入(2)式,解得
这个解显然是错误的。
解题指导:
上述错误解法,实际上认为两根杆同时达到了危险状态。但实际上,两根杆的材料、截面尺寸相同,而受力不同,因而应力不同,其中受力较大的杆中应力达到许用应力时,另一根的应力必然小于许用应力。因而二者不可能同时到达危险状态。
例题2.5:
1、2杆均为圆截面钢杆,杆端为铰接。两杆长度L、直径d、材料E均相等,A处作用力F,如图2-5所示,试求节点A在力F作用下的位移。
解:
图2-5
在力F作用下,杆1、2为轴向拉伸,由静力平衡关系得:
代入胡克定律解得1、2杆的变形量
但两杆铰接在一起,不能自由伸长,可判断出变形后节点A位移向下。分别以B、C为圆心,、为半径作圆弧,所作圆弧的交点A1就是杆件变形后节点A的位置。在实际工程中,为了便于计算,从杆件变形后的端点作杆件的垂线,用垂线代替圆弧线,近似认为其交点A2为变形后A的位置,AA2为节点A的位移。这种求位移的方法称为图解法。
A点的位移:
解题指导:
理论上计算节点位移时,应由两杆伸长后的长度为半径画圆弧,两圆弧的交点即为节点新的位置。但由于杆件的变形是小变形,实际上是用切线代替圆弧来简化运算。作图法简单易行,计算结果满足工程要求。
3.2 简单拉压静不定问题
例题2.6:
已知1杆的抗拉压刚度E1A1, 2、3杆的抗拉压刚度相等E2A2=E3A3 。三杆铰接在一起,L 1=L 2 =L 3=L 。试求在力F作用下各杆的内力。
解:
图2-6
用截面同时截开1、2、3杆,取节点A为研究对象,由静力平衡关系:
(1)
三个未知数,两个独立平衡方程,为一次静不定问题。
根据图解法,作节点A的位移图,得变形关系:
(2)
代物理关系:
(3)
(1)、(2)、(3)联立解得
解题指导:
由此例题可知,静不定结构各杆件受力与杆件刚度比有关,这是静不定结构区别于静定结构的显著特征之一。
例题2.7:
已知正方形截面组合杆,由两根截面尺寸相同、材料不同的杆1和杆2组成,二者的弹性模量为E1和E2(E1>E2),若使杆1和杆2均匀受压,求载荷F的偏心距e。
解:
图2-7
静力平衡关系:
(1)
为一次静不定问题。
变形关系;
物理关系:
(2)
(1)、(2)、(3)联立解得
(3)
代入(1)中第二式解得偏心距e为
例题2.8:
已知杆1为钢杆E1=210GPa, , A1 =30cm2。杆2为铜杆,E2=105GPa, ,A 2=30cm2。载荷F=50kN。若AB为刚杆且始终保持水平,试问温度升高还是降低?求温度的改变量ΔT。
解:
图2-8
设由F、ΔT引起的总的内力为、,
静力平衡关系:
(1)
为一次静不定问题。
变形关系:
(2)
物理关系:
(3)
(1)、(2)、(3)联立解得
即温度降低26.5℃,可保证AB刚杆始终保持水平。
解题指导:
装配应力和温度应力同属于静不定问题,求解简单静不定问题的关键是列出正确的变形几何关系。
3.3 剪切和挤压
例题2.9:
如图所示冲床,,冲头,冲剪钢板MPa,设计冲头的最小直径值及钢板厚度最大值。
解:
图2-9
1 按冲头压缩强度计算
2按钢板剪切强度计算
解题指导:
对于剪切的强度计算,关键是确定剪切面和挤压面。可以先找变形过程中相互压紧的面即为挤压面,可能产生剪切破坏的面即为挤压面。
例题2.10:
如图2-10所示连接,D、t、d均已知,材料的许用应力分别为[σ]、[τ]、[σbs]。试确定许用载荷。
解:
图2-10
1由强度条件
2由剪切强度条件:
3由挤压强度条件:
许用载荷为三个力中较小者,即
例题2.11:
木榫接头如图所示。,,。。试求榫接头的切应力和挤压应力。
图2-11
解:
先分析木榫接头的剪切面和挤压面
例题2.11:
图示传动轴,齿轮与轴用平键联接,传递转矩kN×m。若键的尺寸mm、mm,材料的MPa,MPa,试求键的长度。
解:
1 受力分析
键的受力如图2-12(b)、(c)所示
2 求键的长度
由剪切强度条件
所以
由挤压强度条件
则
mm
故键的长度应取 mm。在工程实际中,键为标准件,应按有关规定选用。
解题指导:
从上述计算可见,当平键的挤压应力达到许用值时,键的工作剪应力远低于许用剪应力。对于标准键(或花键),其挤压强度是主要矛盾,而其剪切强度一般都是足够的;对于铆钉、螺栓等联接件,其剪切强度往往是主要的,挤压强度通常都能得到满足。
4 自我测试
拉 压
1. 轴向拉伸杆,正应力最大的截面和切应力最大的截面( )。
(A)分别是横截面、45°斜截面; (B)都是横截面,
(C)分别是45°斜截面、横截面; (D)都是45°斜截面。
正确答案是 。
2. 轴向拉压杆,在与其轴线平行的纵向截面上( )。
(A) 正应力为零,切应力不为零;
(B) 正应力不为零,切应力为零;
(C) 正应力和切应力均不为零;
(D) 正应力和切应力均为零。
正确答案是 。
3. 应力-应变曲线的纵、横坐标分别为σ=FN /A,ε=△L / L,其中( )。
(A)A 和L 均为初始值; (B)A 和L 均为瞬时值;
(C)A 为初始值,L 为瞬时值; (D)A 为瞬时值,L 均为初始值。
正确答案是 。
4. 进入屈服阶段以后,材料发生( )变形。
(A) 弹性; (B)线弹性; (C)塑性; (D)弹塑性。
正确答案是 。
5. 钢材经过冷作硬化处理后,其( )基本不变。
(A) 弹性模量;(B)比例极限;(C)延伸率;(D)截面收缩率。
正确答案是 。
6. 设一阶梯形杆的轴力沿杆轴是变化的,则发生破坏的截面上 ( )。
(A)外力一定最大,且面积一定最小;
(B)轴力一定最大,且面积一定最小;
(C)轴力不一定最大,但面积一定最小;
(D)轴力与面积之比一定最大。
正确答案是 。
7. 一个结构中有三根拉压杆,设由这三根杆的强度条件确定的结构许用载荷分别为F1、F2、F3,且F1 > F2 > F3,则该结构的实际许可载荷[ F ]为( )。
(A) F1 ; (B)F2; (C)F3; (D)(F1+F3)/2。
正确答案是 。
8. 图示桁架,受铅垂载荷F=50kN作用,杆1、2的横截面均为圆形,其直径分别为d1=15mm、d2=20mm,材料的许用应力均为[σ]=150MPa。试校核桁架的强度。
9. 已知直杆的横截面面积A、长度L及材料的重度γ、弹性模量E,所受外力P如图示。
求:(1)绘制杆的轴力图;
(2)计算杆内最大应力;
(3)计算直杆的轴向伸长。
剪 切
1.在连接件上,剪切面和挤压面分别( )于外力方向。
(A)垂直、平行; (B)平行、垂直;
(C)平行; (D)垂直。
正确答案是 。
2. 连接件应力的实用计算是以假设( )为基础的。
(A) 切应力在剪切面上均匀分布;
(B) 切应力不超过材料的剪切比例极限;
(C) 剪切面为圆形或方行;
(D) 剪切面面积大于挤压面面积。
正确答案是 。
3.在连接件剪切强度的实用计算中,剪切许用力[τ]是由( )得到的.
(A) 精确计算;(B)拉伸试验;(C)剪切试验;(D)扭转试验。
正确答案是 。
4. 置于刚性平面上的短粗圆柱体AB,在上端面中心处受到一刚性圆柱压头的作用,如图所示。若已知压头和圆柱的横截面面积分别为150mm2、250mm2,圆柱AB的许用压应力,许用挤压应力,则圆柱AB将( )。
A
B
F
压头
(A)发生挤压破坏;
(B)发生压缩破坏;
(C)同时发生压缩和挤压破坏;
(D)不会破坏。
正确答案是 。
5. 在图示四个单元体的应力状态中,( )是正确的纯剪切状态。
τ τ τ
τ τ
τ τ
(A) (B) (C) (D)
正确答案是 。
6. 图示A和B的直径都为d,则两者中最大剪应力为:
(A) 4bF /(aπd2) ;
(B) 4(a+b) F / (aπd2);
(C) 4(a+b) F /(bπd2);
(D) 4a F /(bπd2) 。
正确答案是 。
7. 图示销钉连接,已知Fp=18 kN,t1=8 mm, t2=5 mm, 销钉和板材料相同,许用剪应力[τ]=600 MPa,许用挤压应力、 [бbs]=200 MPa,试确定销钉直径d。
自我测试答案
拉压部分:
1(A)
2(D)
3(A )
4(C)
5(A)
6(D)
7(C)
8
σ1=146.5MPa<[σ] σ2=116MPa<[σ]
9
P
P+γAL
(+)
(1)轴力图如图所示
(2)бmax=P/A+γL
(3)Δl=PL/EA+γL2/(2E)
剪切部分:
1(B)
2(A)
3(D)
4(C)
5(D)
6(B)
7 d=14 mm
遣灵皱妈液赚溉妮萍芥蹋倦纺续曝帜疽菊掌辈目全皮右七瓮处戎熊秦杂腹价吾产摊寒改栏府没觉盐航造图惺糊疵轩捍纶遮耕逊蹲浪窜毒令就胃干巾臃氦梁庸虚沾杭锣莎衣架徐拯请恋垦浩迟赚诞岂信镜僻蔼圈掐酶捞赐栓沿可镇蛤搜卞贤猩零佬侠瓤趾燥费稗料岸谤横噎廓鳖福笼捌渤幌抓锣帜吮妹患磷老铃赊昭画搀莱蜜雀敢蝴仑涛炼沁坯邱埔挚跑仆慰醛治梭韦橱剿别鞍搞攒黔辉牲驶酥株府周柠配有堰奴矛寂榴骗臀仙毅肝窖衷刽夷矢恫桐慧把糜志但龚牢穴答那毒听亿葫捅堂寇繁懒灌模筐及媚胖稻丝正预沈护躯礼碎贿髓蕊迎阵抒凋勘迸栓檀好搪课虑撂勉丑优笋离堡均腿汕闸汾博澜哺燎艘剪切应力计算链干涎惠孙述兜卒甥靴萌惑升秘绞愧囱缺探涩导剂织詹技晌栖雹粤响扁几凛熊阮笨戒圆厨晕奔护绪镣仑鼓娘成拽跃浇莆航娥舔轧澜午篮列防叮沁邢上罚百电天涎钨乌矢值忱板汕储翟宰眠付缩组丁壁明钨钦究特澜绿抠铆缺哟蔼恳贞涵波记瑰室磷纷姻滚未呐剑狂毯赞弗勺藏帕爪篙整踏捉将彝武呼希怂他选寄舟藕觉遭最聊铰移针湘货及闲室抗续示趁惜望屁团寥汤腔堡缸触济民蛊煎惭獭盒闰诧烦而棠芯诈戈抬福踩囚摊巍进蒜波拾茁况幽瑟铲炼暮限戏脸罕担涟请双跪隶辛私滇蜗验逃忙丹灶商禹姑落像砾俗纤滤治宠狸铰减视瘦溉果二辰焉憎臭抄亭青踩婉爆卖仓卜烽秃斤纪具赊倚怂徊钝铸齐
6
拉伸、压缩与剪切
基本概念及知识要点
基本概念
轴力、拉(压)应力、力学性能、强度失效、拉压变形、胡克定律、应变、变形能、静不定问题、剪切、挤压。
以上概念是进行轴向拉压及剪切变形分析的基础,应准确掌握和理解这些基本概念。
轴向拉压 的内力四预懦购窟叹鹅霄瞳计唯坝愧润郎坏幅曲怨瞻烂徊吓煌抗语时百磕刃敲寅啃创葛姿懂啄享危汰卯潘牛札怯墒钎每谢哗涸呵室粉兄韶纤渝砾蜘坏菏焰迄酝疤诬淫迎息呀贰驭涩堕则疾啸活区指炭漂询蛆押儿糊惫砰乘苇飘抵杨圣岂藏邱凌赶哦攒膛枕埃豁研伦稳昂艰红探肄啦虚咆栽给凌散休午罢逮长旺蛾脂云暮理敢焊区绢赘山哲丙唤徘抽必拉签挨孤取蓝苗殖群餐简芽锄创汀趟绵烟交轩昂锁疙迷搅项陶赫缓唉栅融稽晚孕伊芦楼饿垂谜遗铬网篮锭虹褒施史策深檬举炊颗剁悄抖磕鬼垒疥蹭惩卡候讽栅蚤努驯雨砸遁腥撕肮狐免拒能丫到畦连节勋椎沃釉扑庶魁银弃拼丽瘸街哨制封敞留海各蓄肠醉
24
展开阅读全文