资源描述
第1课 函数的概念
【考点导读】
1.在体会函数是描述变量之间的依赖关系的重要数学模型的基础上,通过集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.
2.准确理解函数的概念,能根据函数的三要素判断两个函数是否为同一函数.
【基础练习】
1.设有函数组:①,;②,;③,;④,;⑤,.其中表示同一个函数的有_____.
y
1
2
2
x
O
②
1
2
2
x
y
O
①
1
2
2
x
O
③
y
2.设集合,,从到有四种对应如图所示:
1
2
2
x
O
④
y
其中能表示为到的函数关系的有_________.
3.写出下列函数定义域:
(1) 的定义域为______________; (2) 的定义域为______________;
(3) 的定义域为______________; (4) 的定义域为_________________.
4.已知三个函数:(1); (2); (3).写出使各函数式有意义时,,的约束条件:
(1)______________________; (2)______________________; (3)______________________________.
5.写出下列函数值域:
(1) ,;值域是____________.
(2) ; 值域是___________.
(3) ,. 值域是______________.
【范例解析】
例1.设有函数组:①,;②,;
③,;④,.其中表示同一个函数的有_________.
例2.求下列函数的定义域:① ; ② ;
例3.求下列函数的值域:
(1),;
(2);
(3).
【反馈演练】
1.函数f(x)=的定义域是___________.
2.函数的定义域为_________________.
3. 函数的值域为________________.
4. 函数的值域为_____________.
5.函数的定义域为_____________________.
6.记函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1) 的定义域为B.
(1) 求A;
(2) 若BA,求实数a的取值范围
第2课 函数的表示方法
【考点导读】
1.会根据不同的需要选择恰当的方法(如图像法,列表法,解析法)表示函数.
2.求解析式一般有四种情况:(1)根据某个实际问题须建立一种函数关系式;(2)给出函数特征,利用待定系数法求解析式;(3)换元法求解析式;(4)解方程组法求解析式.
【基础练习】
1.设函数,,则_________;__________.
2.设函数,,则___________;_______;________.
第5题
3.已知函数是一次函数,且,,则____.
4.设f(x)=,则f[f()]=_____________.
5.如图所示的图象所表示的函数解析式为__________________________.
【范例解析】
例1.已知二次函数的最小值等于4,且,求的解析式.
【反馈演练】
1.若,,则( )
A. B. C. D.
2.已知,且,则m等于________.
3. 已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.求函数g(x)的解析式.
第3课 函数的单调性
【考点导读】
1.理解函数单调性,最大(小)值及其几何意义;
2.会运用单调性的定义判断或证明一些函数的增减性.
【基础练习】
1.下列函数中:
①; ②; ③; ④.
其中,在区间(0,2)上是递增函数的序号有______.
2.函数的递增区间是___ __.
3.函数的递减区间是__________.
4.已知函数在定义域R上是单调减函数,且,则实数a的取值范围__________.
5.已知下列命题:
①定义在上的函数满足,则函数是上的增函数;
②定义在上的函数满足,则函数在上不是减函数;
③定义在上的函数在区间上是增函数,在区间上也是增函数,则函数在上是增函数;
④定义在上的函数在区间上是增函数,在区间上也是增函数,则函数在上是增函数.
其中正确命题的序号有___________.
【范例解析】
例1 求证:(1)函数在区间上是单调递增函数;
(2)函数在区间和上都是单调递增函数.
例2.确定函数的单调性.
【反馈演练】
1.已知函数,则该函数在上单调递__减__,(填“增”“减”)值域为_________.
2.已知函数在上是减函数,在上是增函数,则__25___.
3. 函数的单调递增区间为.
4. 函数的单调递减区间为.
5. 已知函数在区间上是增函数,求实数a的取值范围.
第4课 函数的奇偶性
【考点导读】
1.了解函数奇偶性的含义,能利用定义判断一些简单函数的奇偶性;
2.定义域对奇偶性的影响:定义域关于原点对称是函数为奇函数或偶函数的必要但不充分条件;不具备上述对称性的,既不是奇函数,也不是偶函数.
【基础练习】
1.给出4个函数:①;②;③;④.
其中奇函数的有______;偶函数的有_______;既不是奇函数也不是偶函数的有________.
2. 设函数为奇函数,则实数 .
3.下列函数中,在其定义域内既是奇函数又是减函数的是( )
A. B. C. D.
【范例解析】
例1.判断下列函数的奇偶性:
(1); (2);
(3); (4);
(5); (6)
例2. 已知定义在上的函数是奇函数,且当时,,求函数的解析式,并指出它的单调区间.
【反馈演练】
1.已知定义域为R的函数在区间上为减函数,且函数为偶函数,则( )
A. B. C. D.
2. 在上定义的是偶函数,且,若在区间是减函数,则( )
A.在区间上是增函数,区间上是增函数
B.在区间上是增函数,区间上是减函数
C.在区间上是减函数,区间上是增函数
D.在区间上是减函数,区间上是减函数
3. 设,则使函数的定义域为R且为奇函数的所有的值为______.
4.设函数为奇函数,则________.
5.若函数是定义在R上的偶函数,在上是减函数,且,则使得的x的取
值范围是___________.
6. 已知函数是奇函数.又,,求a,b,c的值;
第5 课 函数的图像
【考点导读】
1.掌握基本初等函数的图像特征,学会运用函数的图像理解和研究函数的性质;
2.掌握画图像的基本方法:描点法和图像变换法.
【基础练习】
1.根据下列各函数式的变换,在箭头上填写对应函数图像的变换:
(1) ;
(2) .
2.作出下列各个函数图像的示意图:
(1); (2); (3).
3.作出下列各个函数图像的示意图:
(1); (2); (3); (4).
4. 函数的图象是 ( )
A
1
x
y
O
B
1
x
y
O
C
1
x
y
O
D
1
x
y
O
-1
-1
-1
-1
1
1
1
1
【范例解析】
例1.作出函数及,,,,的图像.
例2.设函数.
(1)在区间上画出函数的图像;
【反馈演练】
O
y
1
1
B.
x
O
y
x
1
1
A.
1.函数的图象是( )
O
y
-1
1
D.
x
O
y
x
-1
1
C.
2. 为了得到函数的图象,可以把函数的图象_____________.
3.已知函数的图象有公共点A,且点A的横坐标为2,则=________.
4.设f(x)是定义在R上的奇函数,且y=f (x)的图象关于直线对称,则
f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_________ .
5. 作出下列函数的简图:
(1); (2); (3).
展开阅读全文