资源描述
22.3实际问题与一元二次方程(1)
教学内容
本节课主要学习建立一元二次方程的数学模型解决传播问题。
教学目标
知识技能
1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.
2.能根据具体问题的实际意义,检验结果是否合理.
数学思考:经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
解决问题:通过解决传播问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展实践应用意识.
情感态度:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.
重难点、关键
重点:列一元二次方程解有关传播问题的应用题
难点:发现传播问题中的等量关系
关键:建立一元二次方程的数学模型解传播问题
教学过程
一、 复习引入
【问题】
下表是某一周甲、乙两种股票每天每股的收盘价(收盘价:股票每天交易结果时的价格):
星期
一
二
三
四
五
甲
12元
12.5元
12.9元
12.45元
12.75元
乙
13.5元
13.3元
13.9元
13.4元
13.75元
某人在这周内持有若干甲、乙两种股票,若按照两种股票每天的收盘价计算(不计手续费、税费等),则在他帐户上,星期二比星期一增加200元,星期三比星期二增加1300元,这人持有的甲、乙股票各多少股?
老师点评分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y乘以相应的每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.
解:设这人持有的甲、乙股票各x、y张.
则 解得
【思考】
列方程解应用题的基本步骤有哪些?应注意什么?
二、 探索新知
【问题情境】
有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?
【分析】
(1)本题中有哪些数量关系?
(2)如何理解“两轮传染”?
(3)如何利用已知的数量关系选取未知数并列出方程?
(4)能否把方程列得更简单,怎样理解?
(5)解方程并得出结论,对比几种方法各有什么特点?
【解答】
设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。于是可列方程:
1+x+x(1+x)=121
解方程得 x1=10, x2=-12(不合题意舍去)
因此每轮传染中平均一个人传染了10个人.
【思考】
如果按这样的传播速度,三轮传染后有多少人患了流感?
【活动方略】
教师提出问题
学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题.
【设计意图】
使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验.
三、 反馈练习
1.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,那么根据题意列出的方程是( )
A.x(x+1)=182 B.x(x-1)=182
C.2x(x+1)=182 D.x(1-x)=182×2
2.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共( ).
A.12人 B.18人 C.9人 D.10人
四、 应用拓展
例1:参加足球联赛的每两队之间都进行了两次比赛(双循环比赛),共要比赛90场,共有多少个队参加了比赛?
例2:学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?
【分析】
(1) 两题中有哪些数量关系?
(2)由这些数量关系还能得到什么新的结论?你想如何利用这些数量关系?为什么?如何列方程?
(3)对比两题,它们有什么联系与区别?
五、 小结作业
1.问题:
通过本课的学习,大家有什么新的收获和体会?
本节课应掌握:用“传播问题”建立数学模型,并利用它解决一些具体问题.
2.作业:教材P53,习题22.3第1、2、6题,P58,复习题22第6题.
展开阅读全文