收藏 分销(赏)

直线与圆的方程综合复习.doc

上传人:仙人****88 文档编号:9399487 上传时间:2025-03-24 格式:DOC 页数:8 大小:305.20KB
下载 相关 举报
直线与圆的方程综合复习.doc_第1页
第1页 / 共8页
直线与圆的方程综合复习.doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述
直线与圆的方程综合复习 教学目标 直线与圆的方程综合复习 重点难点 知识点梳理与运用能力提高 一.限时小测 1.若直线过点(1,2),(4,2+),则此直线的倾斜角是(  ) A 30°  B 45°  C  60°  D  90° 2.直线mx-y+2m+1=0经过一定点,则该点的坐标是 A(-2,1) B (2,1) C (1,-2) D (1,2) 3.若动点到点和直线的距离相等,则点的轨迹方程为( ) A B C D 4.直线与直线互相平行,则的值为 . 5.圆在点处的切线方程为( ) A B C D 二.例题讲解 类型一:圆的方程 例1 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为. ∵圆心在上,故. ∴圆的方程为. 又∵该圆过、两点. ∴ 解之得:,. 所以所求圆的方程为. 解法二:(直接求出圆心坐标和半径) 因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线的方程为:即. 又知圆心在直线上,故圆心坐标为 ∴半径. 故所求圆的方程为. 又点到圆心的距离为 . ∴点在圆外. 例2 求半径为4,与圆相切,且和直线相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解. 解:则题意,设所求圆的方程为圆. 圆与直线相切,且半径为4,则圆心的坐标为或. 又已知圆的圆心的坐标为,半径为3. 若两圆相切,则或. (1)当时,,或(无解),故可得. ∴所求圆方程为,或. (2)当时,,或(无解),故. ∴所求圆的方程为,或. 说明:对本题,易发生以下误解: 由题意,所求圆与直线相切且半径为4,则圆心坐标为,且方程形如.又圆,即,其圆心为,半径为3.若两圆相切,则.故,解之得.所以欲求圆的方程为,或. 上述误解只考虑了圆心在直线上方的情形,而疏漏了圆心在直线下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的. 例3 求经过点,且与直线和都相切的圆的方程. 分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上. 解:∵圆和直线与相切, ∴圆心在这两条直线的交角平分线上, 又圆心到两直线和的距离相等. ∴. ∴两直线交角的平分线方程是或. 又∵圆过点, ∴圆心只能在直线上. 设圆心 ∵到直线的距离等于, ∴. 化简整理得. 解得:或 ∴圆心是,半径为或圆心是,半径为. ∴所求圆的方程为或. 说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法. 例4、 设圆满足:(1)截轴所得弦长为2;(2)被轴分成两段弧,其弧长的比为,在满足条件(1)(2)的所有圆中,求圆心到直线的距离最小的圆的方程. 分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程. 解法一:设圆心为,半径为. 则到轴、轴的距离分别为和. 由题设知:圆截轴所得劣弧所对的圆心角为,故圆截轴所得弦长为. ∴ 又圆截轴所得弦长为2. ∴. 又∵到直线的距离为 ∴ 当且仅当时取“=”号,此时. 这时有 ∴或 又 故所求圆的方程为或 解法二:同解法一,得 . ∴. ∴. 将代入上式得: . 上述方程有实根,故 , ∴. 将代入方程得. 又  ∴. 由知、同号. 故所求圆的方程为或. 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢? 类型二:切线方程、切点弦方程、公共弦方程 例5 已知圆,求过点与圆相切的切线. 解:∵点不在圆上, ∴切线的直线方程可设为 根据 ∴ 解得 所以 即 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为. 说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解. 本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用,求出切点坐标、的值来解决,此时没有漏解. 例6 两圆与相交于、两点,求它们的公共弦所在直线的方程. 分析:首先求、两点的坐标,再用两点式求直线的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧. 解:设两圆、的任一交点坐标为,则有:    ①    ② ①-②得:. ∵、的坐标满足方程. ∴方程是过、两点的直线方程. 又过、两点的直线是唯一的. ∴两圆、的公共弦所在直线的方程为. 说明:上述解法中,巧妙地避开了求、两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛. 例7、过圆外一点,作这个圆的两条切线、,切点分别是、,求直线的方程。 练习: 1.求过点,且与圆相切的直线的方程. 解:设切线方程为,即, ∵圆心到切线的距离等于半径, ∴,解得, ∴切线方程为,即, 当过点的直线的斜率不存在时,其方程为,圆心到此直线的距离等于半径, 故直线也适合题意。 所以,所求的直线的方程是或. 2、过坐标原点且与圆相切的直线的方程为 解:设直线方程为,即.∵圆方程可化为,∴圆心为(2,-1),半径为.依题意有,解得或,∴直线方程为或. 3、已知直线与圆相切,则的值为 . 解:∵圆的圆心为(1,0),半径为1,∴,解得或.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服