收藏 分销(赏)

炼钢英语论文.doc

上传人:仙人****88 文档编号:9313188 上传时间:2025-03-21 格式:DOC 页数:11 大小:888.50KB
下载 相关 举报
炼钢英语论文.doc_第1页
第1页 / 共11页
炼钢英语论文.doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述
Fuel90(2011)1350–1360 ContentslistsavailableatScienceDirect Fuel journal homepage: Numericalsimulationofoff-gasformationduringtop-blownoxygen convertersteelmaking ⇑ SenLi,XiaolinWei ,LixinYu InstituteofMechanics,ChineseAcademyofSciences,No.15Beisihuanxi Road,Beijing100190,China a r t i c l e i n f o a b s t r a c t Articlehistory: Intop-blownoxygenconvertersteelmakingprocess,alargeamountofhigh-temperatureoff-gasispro- duced,andtheoff-gasisapreciousvaluablefuelcontaininghighconcentrationofcarbonmonoxide(CO). Numericalmodelisdevelopedfortop-blownoxygenconverteroff-gasformation,theoff-gasformationis simulatedusingthedevelopedmodel,andtheinfluencesoftheoperatingmodelofconverteronthechar- acteristicsofoff-gas(concentrations,temperature,flowrateandsensibleheatflux)areinvestigated.The simulated results indicate that CO concentration varies gently, CO concentration can reach about 80% Received13October2009 Receivedinrevisedform11January2011 Accepted12January2011 Availableonline26January2011 Keywords: during10–80%blowingoxygentime,thechangetrendofCO concentrationiscontrarytothatofCOcon- 2 Numerical simulation Converter off-gas Concentration Flowrate centrationduring0–90%blowingoxygentime,andthedramaticchangesofoxygenlanceheightresultin significantfluctuationsofoff-gasflowrate.Theoperationmodelofoxygen-blowingpressuresignificantly affectsoff-gassensibleheatflux,andthesensibleheatfluxishighduring40–80%blowingoxygentime. Ó2011ElsevierLtdAllrightsreserved. Sensibleheatflux 1.Introduction gas recovery and consider the requirement of off-gas quality by users,therelevant restricted conditions mustbeset[7].Thesensi- Oxygen blown converter steelmaking has developed for over 50years, and the process is retaining its predominance as the world’s No.1 steelmaking method by technological innovation [1].Oxygenblownconverter isgenerally dividedintotop-blowing, bottom-blowing andmixedblowing. Top-blown oxygensteelmak- ingproduces 85.5%ofsteelmadebyconverter [2].Acharacteristic ofconverter production isthe formation of alarge amount of off- gas. Converter off-gas isaprecious valuable fuel containing about 80% carbon monoxide (CO) during the period of high gas produc- tion.Off-gas hasalarge amount ofsensible heat, anditstempera- tureattheconverter outletcanreach1450–1700 °C[3].Converter off-gas isan important secondary energy resource for steel enter- prises. Therefore, itisimportant forsteelenterprises toeffectively recover converter off-gas and itssensible heat. Withthesharpriseinenergycosts,strenuous effortshavebeen made in development of new technique. Improving the recovery systems of converter off-gas and its sensible heat can effectively reduce theproduction costofsteelmaking, laying thebasisforen- ergy-saving steelmaking, and can remarkably decrease the total quantities of pollutant emissions to realize cleaner production. However, most of off-gas sensible heat becomes waste in spite of its large potential [4,5], mainly because of the intermittent dis- charge, the frequent change of composition concentrations, and the possibility of the explosion [6]. To ensure the safety of off- ble heat of converter off-gas is often utilized by cooling stack or waste heat boiler. Owing tothe frequent fluctuations oftempera- ture and flowrate of converter off-gas during steelmaking, the operational parameters of hot water or stream cooling circuit of stack and waste heat boiler fluctuate correspondingly, and the fa- tigue breakdown of heating surfaces easily occurs. Therefore, the change characteristics of converter off-gas during steelmaking are important for the improvement of converter off-gas recovery and itssensible heat utilization. In the past decades, most researchers have developed mathe- maticalmodelsformodeling theimpuritycontentinmoltenmetal bath of oxygen converter, two-phase turbulent flow in the cavity without chemical reaction and post combustion ofoff-gas [8–15], but little work has focused on the simulation of converter off-gas formation. In order to improve the system of converter off-gas recovery and sensible utilization, the process model development for predicting the converter off-gas formation is very necessary. Inthispaper, numerical model isfocused ontheoff-gas formation of the oxygen top-blown converter. Converter off-gas formation during blowing oxygen steelmaking is modeled, and the change characteristics of off-gas (concentrations, temperature, flowrate and sensible heat flux) are investigated bynumerical simulation. 2.Process description ofconverter off-gas formation ⇑ The main role ofoxygen converter istoreduce the contents of carbon and other impurities of pig iron liquid through oxidation Corresponding author.Tel.:+861082544231 E-mailaddresses:lisen@(S.Li),xlwei@(X.Wei). 0016-2361/$ -seefrontmatterÓ2011ElsevierLtdAllrightsreserved. doi:10.1016/j.fuel.2011.01.022 S.Lietal./Fuel90(2011)1350–1360 1351 reactions by blowing oxygen [16]. The top-blown oxygen steel- makingprocessisautogenous: therequired thermalenergyispro- ducedduring theprocess. Theconverter istiltedandcharged, first withscrapandthenwiththemolteniron,andthenreturnedtothe uprightposition.Themoltenironaccountsforabout80%oftheto- talcharge, therestconsisting ofsteelscrap. Atypical chemistry of molten iron charged into the converter is: 4% C, 0.2–0.8% Si, 0.08–0.18% P,and0.02–0.08% Mn[16,17]. Theconverter issetup- right and a water-cooled oxygen lance is lowered down into it. High-purity oxygenisblownintoconvertervesselthroughthever- tically oriented water-cooled lance. The oxygen lance blows 99% purity oxygen onto the molten metal surface, igniting the carbon dissolved in the metal and burning it to form carbon monoxide Theimpurity removal reactions mainlyoccuronthecavitysur- faceofmoltenmetalbathandslag–metal interface.Thecavitysur- face is important to decarburize and remove silicon from the molten metal, and the demanganization and dephosphorization reactionsoccurnotonlyonthecavitysurfacebutalsoonslag–me- tal interface, as shown in Fig. 1. During oxygen converter steel- making, the oxygen is delivered into the converter by a top lance,whichterminates inafittingthatcontainsseveralLavalnoz- zles. Each nozzle produces ajet atapproximately twice the speed ofsound, andthejetpenetrates deeply into themolten metal and creates oscillation blowing cavity [21], as shown in Fig. 2. The shape and area of the cavity surface are related with the oxygen- blowing pressure (p ), oxygen lance height (L), the diameter of 0 (CO) and carbon dioxide (CO ),causing the temperature torise to 2 oxygen lance nozzle (d ) and nozzle number (n). Oxygen lance 1 z about1700°C[17].Thismeltsthescrap,lowersthecarboncontent ofthemoltenironandhelpsremoveunwantedchemicalelements. Fluxes(burntlimeordolomite) arefedintothevesseltoformslag which absorbs impurities of the steelmaking process. Typical capacitiesare200–300tonsofliquidsteel,andthetap-to-tapcycle isabout 30–40min with 13–18min blowing oxygen period. The top-blown oxygen steelmaking process is a very complex batch reaction course. Decarburization of molten metal is a basic process ofoxygen converter steelmaking, andtheprocess isdeter- mined bythedevelopment ofheat andmass transfer processes in the bath [18–20]. For top-blown converter, the oxidization reac- tions of impurities mainly occur on the cavity surface of molten metalbathformed bytop-blown oxygen andslag–metal interface, asshown inFig. 1. heightisthedistancebetween oxygenlancenozzletipandmolten metal liquid level, as shown in Fig. 2. The area calculation of the cavity surface area can be referred to references [8,22,23], and the area calculation of the slag–metal interface can be referred to reference [23]. Whenoxygenisinjectedintoconverterthroughaverticallance, theoxygen isadsorbed onthecavity surface and diffuses into the moltenmetalliquid.ThesolventoxygencanreactwithC,Si,Fe,Mn andPinmolten metalbath,andaseriesofoxidation reactions oc- curs,asshowinFig.1.Thekinetic modelofthereactions ofcavity surface can bereferred toreference [24]. Foroxygentop-blown converter, thereactions ofdemanganiza- tion and dephosphorization mostly occur on slag–metal interface [22].Theoxidationreactionsonslag–metal interfaceareverycom- plex, and these reactions are coupled, as shown in Fig. 1. The ki- netic model of the reactions of slag–metal interface can be referred toRef. [22]. Itisassumed thattheoxidizations ofcarbonandsiliconinmol- tenmetalliquidonlyoccuronthecavitysurface, andthattheoxi- dizations of manganese and phosphorous occur not only on the cavity surface but also on slag–metal interface. The model of the change ofelement (C,Si,Feand P)concentration inmolten metal liquidinmoltenmetalbathduringblowingoxygencanbereferred toreferences [14,24]. Carbon oxidation in molten metal bath is influenced by the temperature ofmolten metalbathandtheelement contents (such as carbon, silicon, manganese and phosphorus), and it produces carbonmonoxide, andcarbonmonoxideusuallyreactswithexcess oxygen inconverter freeboard spacetoproduce carbon dioxide, as showninFig.1.Inthemeantime, smallquantityofnitrogeniscar- ried by oxygen jet stream. Therefore, the off-gas in the converter freeboard ismainly composed ofCO, CO ,N and O2. 2 2 3.Mathematic model off-gas formation Oxygen blown is mostly absorbed by molten metal bath to decarbonize, and then a large amount of carbon monoxide is produced andentersintoconverter off-gas.Secondary combustion of CO with O2 occurs in converter freeboard space, and it is as- sumed that the combustion reaches instantaneous equilibrium: The area calculation ofcavity surface and slag–metal interface, kinetic model of the reactions of cavity surface and the kinetic modelofthereactionsofslag–metal interfacearegiveninthesup- plementary materials. Fig.1. Steelmaking usingtheoxygentop-blownconverter [18,19]. 1352 S.Lietal./Fuel90(2011)1350–1360 dnCO2 dt nCO2 ¼ÀFout nv þRCO ð6Þ dnN2 dt nN2 QO2½N ŠÂ10 2 22:4 ¼ÀFout nv þ ð7Þ ð8Þ n ¼n þnCOþnO þnN v CO2 2 2 Theconverteroff-gasisconsidered asidealgas,andthustheto- tal molar number of off-gas in converter freeboard space also can beexpressed as: According to the chemical equilibrium of CO and the material conservation in converter freeboard space, CO consumption rate (RCO)andthemolarflowrateofoff-gas(Fout)arerespectively calcu- lated asfollows [22]: EÀAÂD RCO ¼ ð9Þ CþDÂB Fout¼AþBÂRCO ð10Þ where 2T þ273 FðT þ273Þ T þ273 QO2½%N ŠÂ10 qnm g 2 22:4 A¼ B¼ FO2þFCO þ þ ð11Þ ð12Þ ð13Þ ð14Þ g g Fig.2. Thecavityformedbytop-blown oxygen. 2ðÀDHCOÞn ÀFðT À273Þ v g 2Fð2T þ273Þ COþ1=2O2 CO2 ð1Þ g It is assumed that: converter off-gas completely mixes; excess off-gasdischarges throughconverter mouthintheblowingoxygen process; the oxidation reactions are controlled by mass transfer; COconsumption rateofabovereactionisRco(mol/s);thedischarge amountofoff-gasisFout(mol/s);thetotalamountofoff-gasincon- verterfreeboard isn (mol);themolenumbers ofO ,COandN in 1 1 1 C¼n þn þ4n CO2 CO O2 1 2nv D¼ v 2 andnN ,respectively. Theamount ofoxy- 2 off-gas arenO2,nCO,n FCO FO 2 CO 2 2 E¼ ð15Þ genblownisQO (m3/s),theconcentration ofN inoxygenblownis þ2nO2 nCO 2 2 [N ] (%), and then the residual oxygen flux after the oxidation of 2 impurities inmoltenmetalbath(FO2)(mol/s)according totheoxi- F¼nO2 whereCPiisthegasspecificheat(i=O ,CO,CO ,N ),J(molK). Accordingtotheheatbalanceofconverteroff-gas,thechangeof off-gas temperature iscalculated asfollows: C PO2þnCOCPCO þnCO2 C þnN2 C ð16Þ PCO2 PN2 dization reactions ofC,Si,Mn, Pand Fe(see Fig. 1)is À" # 2 2 2 b ½CŠ QO2Â100À½N ŠÂ1000 dðW C Þ 2 100Â22:4 m FO2 ¼ dt À2" # " À # À2 ! b ½SiŠ dðW C b ½MnŠ dðW C b ½PŠ dT dt qÀF ðn n v out C þ n COC þ n C þn PCO2 C ÞT þR ðÀDHCOÞ g dðW C Þ Þ 5 Þ g O2 PCO2 CO2 PCO2 N2 PN2 PCO CO m m m ð17Þ ¼ nO2 C þnCO C þnCO C þnN CPN2 dt dt dt PO2 PCO 2 2 ! where,qistotalheatamountabsorbed byoff-gas. dðW C b ½Fe ŠÞ m À ð Þ 2 The model described above is used to simulate the converter off-gas formation of a 203ton top-blown oxygen converter charged with molten pig iron and scrap. The parameters used in the model are shown in Table 1, the initial and boundary condi- tionsareshowninTable2.Themainflowchartofcalculation pro- gram isshown inFig. 3. dt where Wm is the mass of molten metal liquid, kg; C i concentration inmoltenmetalliquid(i=C,Si,Fe,P),kmol/kg(Fe). COflux produced bydecarburization reaction (FCO,mol/s) is: b ½Š is i element FCO¼r J Ac ð3Þ C O 4.Model validation where JO is the average diffusion flux ofoxygen on the cavity sur- face,mol/(sm2);A istheareaofcavitysurface,m2;r isthecon- C C In the practical steelmaking process, since converter off-gas is high-temperature and entrains large amounts of molten dust (0.06–0.11kg (dust)/kg (off-gas)), the composition concentrations of off-gas are hard to be monitored. The decarburization reaction is the key link in the off-gas formation, and the validation of the modelisverifiedbythemonitoreddecarburization rateandcarbon content inmolten metal bath. Inpractical steelmaking process, converter off-gas isoften dis- charged into the cooling stack to be partial combusted, cooled anddusted. Inordertoobtainthedecarburization rateandcarbon content in molten metal bath, off-gas sampling probe is installed onthehighest point ofthecooling stack, the location oftempera- sumption oxygenratioofcarbonoxidation reactionsonthecavity. The calculations of J , AC and rC are given in the supplementary O materials. According to the mass equilibrium of converter off-gas, the changes ofmole numbers ofO ,COandN inconverter freeboard 2 2 space are dn dt n nv RCO 2 O2 O2 ¼FO ÀFout À ð4Þ ð5Þ 2 dnCO dt nCO ¼FCOÀFout nv ÀRCO S.Lietal./Fuel90(2011)1350–1360 1353 Table1 Modelparametersinoxygentop-blownconverteroff-gassystem. of CO and CO2 in flue gas is continuously measured by gas mass spectrometer (EMG-20-1, therelative errorislessthan0.5%),tem- perature of flue gas is measured by Platinum–Rhodium thermo- couples (the measurement accuracy is ±1.5°C), and the flue gas flowrate is measured by gas flow meter (Verabar 400). Based on theconservation ofcarbon,thedecarburization rateofmoltenme- talbath can becalculated as Parameter Value Parameter Value kC kSi/kC 1Â1012kg[Fe]/(kmol [C]Ás) DHSi À817,682J/mol À722,432J/mol À11,76,563J/mol 30kg[C]/kmol [Si] DHFe DHP 1Â10À4kg[C]/kmol[Fe] kFe C b Fe =kC kSi/kC kP/kC
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 学术论文 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服