ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:888.50KB ,
资源ID:9313188      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9313188.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(炼钢英语论文.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

炼钢英语论文.doc

1、 Fuel90(2011)1350–1360 ContentslistsavailableatScienceDirect Fuel journal homepage: Numericalsimulationofoff-gasformationduringtop-blownoxygen convertersteelmaking ⇑ SenLi,XiaolinWei ,LixinYu InstituteofMechanics,ChineseAcademyofSciences,No.15Beisihuanxi Road,Beijing100190,China

2、 a r t i c l e i n f o a b s t r a c t Articlehistory: Intop-blownoxygenconvertersteelmakingprocess,alargeamountofhigh-temperatureoff-gasispro- duced,andtheoff-gasisapreciousvaluablefuelcontaininghighconcentrationofcarbonmonoxide(CO). Numericalmodelisdevelopedfortop-blownoxygenconverteroff-ga

3、sformation,theoff-gasformationis simulatedusingthedevelopedmodel,andtheinfluencesoftheoperatingmodelofconverteronthechar- acteristicsofoff-gas(concentrations,temperature,flowrateandsensibleheatflux)areinvestigated.The simulated results indicate that CO concentration varies gently, CO concentration c

4、an reach about 80% Received13October2009 Receivedinrevisedform11January2011 Accepted12January2011 Availableonline26January2011 Keywords: during10–80%blowingoxygentime,thechangetrendofCO concentrationiscontrarytothatofCOcon- 2 Numerical simulation Converter off-gas Concentration Flowra

5、te centrationduring0–90%blowingoxygentime,andthedramaticchangesofoxygenlanceheightresultin significantfluctuationsofoff-gasflowrate.Theoperationmodelofoxygen-blowingpressuresignificantly affectsoff-gassensibleheatflux,andthesensibleheatfluxishighduring40–80%blowingoxygentime. Ó2011ElsevierLtdAllrights

6、reserved. Sensibleheatflux 1.Introduction gas recovery and consider the requirement of off-gas quality by users,therelevant restricted conditions mustbeset[7].Thesensi- Oxygen blown converter steelmaking has developed for over 50years, and the process is retaining its predominance as the worl

7、d’s No.1 steelmaking method by technological innovation [1].Oxygenblownconverter isgenerally dividedintotop-blowing, bottom-blowing andmixedblowing. Top-blown oxygensteelmak- ingproduces 85.5%ofsteelmadebyconverter [2].Acharacteristic ofconverter production isthe formation of alarge amount

8、of off- gas. Converter off-gas isaprecious valuable fuel containing about 80% carbon monoxide (CO) during the period of high gas produc- tion.Off-gas hasalarge amount ofsensible heat, anditstempera- tureattheconverter outletcanreach1450–1700 °C[3].Converter off-gas isan important secondary e

9、nergy resource for steel enter- prises. Therefore, itisimportant forsteelenterprises toeffectively recover converter off-gas and itssensible heat. Withthesharpriseinenergycosts,strenuous effortshavebeen made in development of new technique. Improving the recovery systems of converter off-ga

10、s and its sensible heat can effectively reduce theproduction costofsteelmaking, laying thebasisforen- ergy-saving steelmaking, and can remarkably decrease the total quantities of pollutant emissions to realize cleaner production. However, most of off-gas sensible heat becomes waste in spite of

11、 its large potential [4,5], mainly because of the intermittent dis- charge, the frequent change of composition concentrations, and the possibility of the explosion [6]. To ensure the safety of off- ble heat of converter off-gas is often utilized by cooling stack or waste heat boiler. Owing tothe

12、 frequent fluctuations oftempera- ture and flowrate of converter off-gas during steelmaking, the operational parameters of hot water or stream cooling circuit of stack and waste heat boiler fluctuate correspondingly, and the fa- tigue breakdown of heating surfaces easily occurs. Therefore, the cha

13、nge characteristics of converter off-gas during steelmaking are important for the improvement of converter off-gas recovery and itssensible heat utilization. In the past decades, most researchers have developed mathe- maticalmodelsformodeling theimpuritycontentinmoltenmetal bath of oxygen con

14、verter, two-phase turbulent flow in the cavity without chemical reaction and post combustion ofoff-gas [8–15], but little work has focused on the simulation of converter off-gas formation. In order to improve the system of converter off-gas recovery and sensible utilization, the process model dev

15、elopment for predicting the converter off-gas formation is very necessary. Inthispaper, numerical model isfocused ontheoff-gas formation of the oxygen top-blown converter. Converter off-gas formation during blowing oxygen steelmaking is modeled, and the change characteristics of off-gas (conce

16、ntrations, temperature, flowrate and sensible heat flux) are investigated bynumerical simulation. 2.Process description ofconverter off-gas formation ⇑ The main role ofoxygen converter istoreduce the contents of carbon and other impurities of pig iron liquid through oxidation Corresponding autho

17、r.Tel.:+861082544231 E-mailaddresses:lisen@(S.Li),xlwei@(X.Wei). 0016-2361/$ -seefrontmatterÓ2011ElsevierLtdAllrightsreserved. doi:10.1016/j.fuel.2011.01.022 S.Lietal./Fuel90(2011)1350–1360 1351 reactions by blowing oxygen [16]. The top-blown oxygen steel- makingprocessisautogenous:

18、therequired thermalenergyispro- ducedduring theprocess. Theconverter istiltedandcharged, first withscrapandthenwiththemolteniron,andthenreturnedtothe uprightposition.Themoltenironaccountsforabout80%oftheto- talcharge, therestconsisting ofsteelscrap. Atypical chemistry of molten iron charged

19、into the converter is: 4% C, 0.2–0.8% Si, 0.08–0.18% P,and0.02–0.08% Mn[16,17]. Theconverter issetup- right and a water-cooled oxygen lance is lowered down into it. High-purity oxygenisblownintoconvertervesselthroughthever- tically oriented water-cooled lance. The oxygen lance blows 99% purit

20、y oxygen onto the molten metal surface, igniting the carbon dissolved in the metal and burning it to form carbon monoxide Theimpurity removal reactions mainlyoccuronthecavitysur- faceofmoltenmetalbathandslag–metal interface.Thecavitysur- face is important to decarburize and remove silicon fro

21、m the molten metal, and the demanganization and dephosphorization reactionsoccurnotonlyonthecavitysurfacebutalsoonslag–me- tal interface, as shown in Fig. 1. During oxygen converter steel- making, the oxygen is delivered into the converter by a top lance,whichterminates inafittingthatcontains

22、severalLavalnoz- zles. Each nozzle produces ajet atapproximately twice the speed ofsound, andthejetpenetrates deeply into themolten metal and creates oscillation blowing cavity [21], as shown in Fig. 2. The shape and area of the cavity surface are related with the oxygen- blowing pressure (p

23、 ), oxygen lance height (L), the diameter of 0 (CO) and carbon dioxide (CO ),causing the temperature torise to 2 oxygen lance nozzle (d ) and nozzle number (n). Oxygen lance 1 z about1700°C[17].Thismeltsthescrap,lowersthecarboncontent ofthemoltenironandhelpsremoveunwantedchemicalelements. F

24、luxes(burntlimeordolomite) arefedintothevesseltoformslag which absorbs impurities of the steelmaking process. Typical capacitiesare200–300tonsofliquidsteel,andthetap-to-tapcycle isabout 30–40min with 13–18min blowing oxygen period. The top-blown oxygen steelmaking process is a very complex b

25、atch reaction course. Decarburization of molten metal is a basic process ofoxygen converter steelmaking, andtheprocess isdeter- mined bythedevelopment ofheat andmass transfer processes in the bath [18–20]. For top-blown converter, the oxidization reac- tions of impurities mainly occur on the ca

26、vity surface of molten metalbathformed bytop-blown oxygen andslag–metal interface, asshown inFig. 1. heightisthedistancebetween oxygenlancenozzletipandmolten metal liquid level, as shown in Fig. 2. The area calculation of the cavity surface area can be referred to references [8,22,23], and

27、 the area calculation of the slag–metal interface can be referred to reference [23]. Whenoxygenisinjectedintoconverterthroughaverticallance, theoxygen isadsorbed onthecavity surface and diffuses into the moltenmetalliquid.ThesolventoxygencanreactwithC,Si,Fe,Mn andPinmolten metalbath,andaserie

28、sofoxidation reactions oc- curs,asshowinFig.1.Thekinetic modelofthereactions ofcavity surface can bereferred toreference [24]. Foroxygentop-blown converter, thereactions ofdemanganiza- tion and dephosphorization mostly occur on slag–metal interface [22].Theoxidationreactionsonslag–meta

29、l interfaceareverycom- plex, and these reactions are coupled, as shown in Fig. 1. The ki- netic model of the reactions of slag–metal interface can be referred toRef. [22]. Itisassumed thattheoxidizations ofcarbonandsiliconinmol- tenmetalliquidonlyoccuronthecavitysurface, andthattheoxi-

30、 dizations of manganese and phosphorous occur not only on the cavity surface but also on slag–metal interface. The model of the change ofelement (C,Si,Feand P)concentration inmolten metal liquidinmoltenmetalbathduringblowingoxygencanbereferred toreferences [14,24]. Carbon oxidation in molten

31、 metal bath is influenced by the temperature ofmolten metalbathandtheelement contents (such as carbon, silicon, manganese and phosphorus), and it produces carbonmonoxide, andcarbonmonoxideusuallyreactswithexcess oxygen inconverter freeboard spacetoproduce carbon dioxide, as showninFig.1.Inthem

32、eantime, smallquantityofnitrogeniscar- ried by oxygen jet stream. Therefore, the off-gas in the converter freeboard ismainly composed ofCO, CO ,N and O2. 2 2 3.Mathematic model off-gas formation Oxygen blown is mostly absorbed by molten metal bath to decarbonize, and then a large amount of

33、 carbon monoxide is produced andentersintoconverter off-gas.Secondary combustion of CO with O2 occurs in converter freeboard space, and it is as- sumed that the combustion reaches instantaneous equilibrium: The area calculation ofcavity surface and slag–metal interface, kinetic model of the r

34、eactions of cavity surface and the kinetic modelofthereactionsofslag–metal interfacearegiveninthesup- plementary materials. Fig.1. Steelmaking usingtheoxygentop-blownconverter [18,19]. 1352 S.Lietal./Fuel90(2011)1350–1360 dnCO2 dt nCO2 ¼ÀFout nv þRCO ð6Þ dnN2 dt nN2 QO2½N

35、ŠÂ10 2 22:4 ¼ÀFout nv þ ð7Þ ð8Þ n ¼n þnCOþnO þnN v CO2 2 2 Theconverteroff-gasisconsidered asidealgas,andthustheto- tal molar number of off-gas in converter freeboard space also can beexpressed as: According to the chemical equilibrium of CO and the material conservation in conv

36、erter freeboard space, CO consumption rate (RCO)andthemolarflowrateofoff-gas(Fout)arerespectively calcu- lated asfollows [22]: EÀAÂD RCO ¼ ð9Þ CþDÂB Fout¼AþBÂRCO ð10Þ where 2T þ273 FðT þ273Þ T þ273 QO2½%N ŠÂ10 qnm g 2 22:4 A¼ B¼ FO2þFCO þ þ ð11Þ ð12Þ ð13Þ ð14Þ g g

37、Fig.2. Thecavityformedbytop-blown oxygen. 2ðÀDHCOÞn ÀFðT À273Þ v g 2Fð2T þ273Þ COþ1=2O2 CO2 ð1Þ g It is assumed that: converter off-gas completely mixes; excess off-gasdischarges throughconverter mouthintheblowingoxygen process; the oxidation reactions are controlled by mass transfer;

38、 COconsumption rateofabovereactionisRco(mol/s);thedischarge amountofoff-gasisFout(mol/s);thetotalamountofoff-gasincon- verterfreeboard isn (mol);themolenumbers ofO ,COandN in 1 1 1 C¼n þn þ4n CO2 CO O2 1 2nv D¼ v 2 andnN ,respectively. Theamount ofoxy- 2 off-gas arenO2,nCO

39、n FCO FO 2 CO 2 2 E¼ ð15Þ genblownisQO (m3/s),theconcentration ofN inoxygenblownis þ2nO2 nCO 2 2 [N ] (%), and then the residual oxygen flux after the oxidation of 2 impurities inmoltenmetalbath(FO2)(mol/s)according totheoxi- F¼nO2 whereCPiisthegasspecificheat(i=O ,CO,CO

40、N ),J(molK). Accordingtotheheatbalanceofconverteroff-gas,thechangeof off-gas temperature iscalculated asfollows: C PO2þnCOCPCO þnCO2 C þnN2 C ð16Þ PCO2 PN2 dization reactions ofC,Si,Mn, Pand Fe(see Fig. 1)is À" # 2 2 2 b ½CŠ QO2Â100À½N ŠÂ1000 dðW C Þ 2 100Â22:4 m FO2 ¼

41、 dt À2" # " À # À2 ! b ½SiŠ dðW C b ½MnŠ dðW C b ½PŠ dT dt qÀF ðn n v out C þ n COC þ n C þn PCO2 C ÞT þR ðÀDHCOÞ g dðW C Þ Þ 5 Þ g O2 PCO2 CO2 PCO2 N2 PN2 PCO CO m m m ð17Þ ¼ nO2 C þnCO C þnCO C þnN CPN2 dt dt dt PO2 PCO 2 2 ! w

42、here,qistotalheatamountabsorbed byoff-gas. dðW C b ½Fe ŠÞ m À ð Þ 2 The model described above is used to simulate the converter off-gas formation of a 203ton top-blown oxygen converter charged with molten pig iron and scrap. The parameters used in the model are shown in Table 1, th

43、e initial and boundary condi- tionsareshowninTable2.Themainflowchartofcalculation pro- gram isshown inFig. 3. dt where Wm is the mass of molten metal liquid, kg; C i concentration inmoltenmetalliquid(i=C,Si,Fe,P),kmol/kg(Fe). COflux produced bydecarburization reaction (FCO,mol/s) is: b ½

44、Š is i element FCO¼r J Ac ð3Þ C O 4.Model validation where JO is the average diffusion flux ofoxygen on the cavity sur- face,mol/(sm2);A istheareaofcavitysurface,m2;r isthecon- C C In the practical steelmaking process, since converter off-gas is high-temperature and entrains larg

45、e amounts of molten dust (0.06–0.11kg (dust)/kg (off-gas)), the composition concentrations of off-gas are hard to be monitored. The decarburization reaction is the key link in the off-gas formation, and the validation of the modelisverifiedbythemonitoreddecarburization rateandcarbon content in

46、molten metal bath. Inpractical steelmaking process, converter off-gas isoften dis- charged into the cooling stack to be partial combusted, cooled anddusted. Inordertoobtainthedecarburization rateandcarbon content in molten metal bath, off-gas sampling probe is installed onthehighest point o

47、fthecooling stack, the location oftempera- sumption oxygenratioofcarbonoxidation reactionsonthecavity. The calculations of J , AC and rC are given in the supplementary O materials. According to the mass equilibrium of converter off-gas, the changes ofmole numbers ofO ,COandN inconverter fr

48、eeboard 2 2 space are dn dt n nv RCO 2 O2 O2 ¼FO ÀFout À ð4Þ ð5Þ 2 dnCO dt nCO ¼FCOÀFout nv ÀRCO S.Lietal./Fuel90(2011)1350–1360 1353 Table1 Modelparametersinoxygentop-blownconverteroff-gassystem. of CO and CO2 in flue gas is continuously measured by gas mass spectr

49、ometer (EMG-20-1, therelative errorislessthan0.5%),tem- perature of flue gas is measured by Platinum–Rhodium thermo- couples (the measurement accuracy is ±1.5°C), and the flue gas flowrate is measured by gas flow meter (Verabar 400). Based on theconservation ofcarbon,thedecarburization rateofmoltenme- talbath can becalculated as Parameter Value Parameter Value kC kSi/kC 1Â1012kg[Fe]/(kmol [C]Ás) DHSi À817,682J/mol À722,432J/mol À11,76,563J/mol 30kg[C]/kmol [Si] DHFe DHP 1Â10À4kg[C]/kmol[Fe] kFe C b Fe =kC kSi/kC kP/kC

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服