收藏 分销(赏)

成都历年中考圆压轴题回放.doc

上传人:仙人****88 文档编号:9311955 上传时间:2025-03-21 格式:DOC 页数:10 大小:1.68MB
下载 相关 举报
成都历年中考圆压轴题回放.doc_第1页
第1页 / 共10页
成都历年中考圆压轴题回放.doc_第2页
第2页 / 共10页
点击查看更多>>
资源描述
成都历年中考圆压轴题回放 例题一 2013年 如图,⊙的半径,四边形内接圆⊙,于点,为延长线上的一点,且. (1)试判断与⊙的位置关系,并说明理由: (2)若,,求的长; (3)在(2)的条件下,求四边形的面积. 27.(1)如图,连接DO并延长交圆于点E,连接AE ∵DE是直径,∴∠DAE=90°, ∴∠E+∠ADE=90° ∵∠PDA=∠ADB=∠E ∴∠PDA+∠ADE=90°即PD⊥DO ∴PD与圆O相切于点D (2) ∵tan∠ADB= ∴可设AH=3k,则DH=4k ∵ ∴PA= ∴PH= ∴∠P=30°,∠PDH=60° ∴∠BDE=30° 连接BE,则∠DBE=90°,DE=2r=50 ∴BD=DE·cos30°= (3)由(2)知,BH=-4k,∴HC=(-4k) 又∵ ∴ 解得k= ∴AC= ∴S= 例题二 2012年 如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K. (1)求证:KE=GE; (2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由; (3)在(2)的条件下,若sinE=,AK=,求FG的长. 考点: 切线的性质;勾股定理;垂径定理;圆周角定理;相似三角形的判定与性质;解直角三角形。 专题: 几何综合题。 分析: (1)如答图1,连接OG.根据切线性质及CD⊥AB,可以推出连接∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE; (2)AC与EF平行,理由为:如答图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF; (3)如答图3所示,连接OG,OC.首先求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度. 解答: 解:(1)如答图1,连接OG. ∵EG为切线,∴∠KGE+∠OGA=90°, ∵CD⊥AB,∴∠AKH+∠OAG=90°, 又OA=OG,∴∠OGA=∠OAG, ∴∠KGE=∠AKH=∠GKE, ∴KE=GE. (2)AC∥EF,理由为: 连接GD,如答图2所示. ∵KG2=KD•GE,即=, ∴=,又∠KGE=∠GKE, ∴△GKD∽△EGK, ∴∠E=∠AGD,又∠C=∠AGD, ∴∠E=∠C, ∴AC∥EF; (3)连接OG,OC,如答图3所示. sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t, ∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK﹣CH=t. 在Rt△AHK中,根据勾股定理得AH2+HK2=AK2, 即(3t)2+t2=()2,解得t=. 设⊙O半径为r,在Rt△OCH中,OC=r,OH=r﹣3t,CH=4t, 由勾股定理得:OH2+CH2=OC2, 即(r﹣3t)2+(4t)2=r2,解得r=t=. ∵EF为切线,∴△OGF为直角三角形, 在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH==, ∴FG===. 点评: 此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键. 例题三 2011年 已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥ A C,垂足为K。过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H. (1)求证:AE=CK; (2)如果AB=,AD= (为大于零的常数),求BK的长: (3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长. (1)证明△AED≌△CKB (2)BK= (3)设GF=x,则EF=x,ED=BK=6, 由射影定理得AE=KC= 由相交弦定理得, ∴ ∴ ∴ ∴K为EC的中点 ∴,∴ ∴ 显然,HE=2BK=12 ∴HG=6 例题四 2010年 已知:如图,内接于,为直径,弦于,是的中点,连结并延长交的延长线于点,连结,分别交、于点、. (1)求证:是的外心; (2)若,求的长; (3)求证:. (1)证明:∵C是的中点,∴, ∴∠CAD=∠ABC ∵AB是⊙O的直径,∴∠ACB=90°。 ∴∠CAD+∠AQC=90° 又CE⊥AB,∴∠ABC+∠PCQ=90° ∴∠AQC=∠PCQ ∴在△PCQ中,PC=PQ, ∵CE⊥直径AB,∴ ∴ ∴∠CAD=∠ACE。 ∴在△APC中,有PA=PC, ∴PA=PC=PQ ∴P是△ACQ的外心。 (2)解:∵CE⊥直径AB于F, ∴在Rt△BCF中,由tan∠ABC=,CF=8, 得。 ∴由勾股定理,得 ∵AB是⊙O的直径, ∴在Rt△ACB中,由tan∠ABC=, 得。 易知Rt△ACB∽Rt△QCA,∴ ∴。 (3)证明:∵AB是⊙O的直径,∴∠ACB=90° ∴∠DAB+∠ABD=90° 又CF⊥AB,∴∠ABG+∠G=90° ∴∠DAB=∠G; ∴Rt△AFP∽Rt△GFB, ∴,即 易知Rt△ACF∽Rt△CBF, ∴(或由摄影定理得) ∴ 由(1),知PC=PQ,∴FP+PQ=FP+PC=FC ∴。 例题五 2009年 如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙0交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD的中点,连结0G. (1)判断0G与CD的位置关系,写出你的结论并证明; (2)求证:AE=BF; (3)若,求⊙O的面积。 例题六 2008年 如图,已知⊙O的半径为2,以⊙O的弦AB为直径作⊙M,点C是⊙O优弧上的一个动点(不与点A、点B重合).连结AC、BC,分别与⊙M相交于点D、点E,连结DE.若AB=2. (1)求∠C的度数; (2)求DE的长; (3)如果记tan∠ABC=y,=x(0<x<3),那么在点C的运动过程中,试用含x的代数式表示y. 解:(1)连结. 则在中, ,, . ,. . 连结.则. . 3分 [或:延长与相交于点,连结. 则有,且. 在中,,. 又, . ,.] (2)在和中, ,, . . 连结.则. 在中, ,. . .即. . 3分 [或:点在上移动,恒为,长始终不变.当点移动到延长线与交点处时,可求得.] (3)连结. 是的直径,. 由,可得,. 在中, ,, ; . 又由(2),知. . 3分 在中, , . 1分 [或:由(2),知, . 又由(2),知,,. 连结.在中,由勾股定理,得 . 又,即. 而 ] 例题七 2007年 O D G C A E F B P 如图,是以为直径的上一点,于点,过点作的切线,与的延长线相交于点是的中点,连结并延长与相交于点,延长与的延长线相交于点. (1)求证:; (2)求证:是的切线; (3)若,且的半径长为,求和的长度. (1)证明:是的直径,是的切线, . 又,. 易证,. O D G C A E F B P H . . 是的中点, . . (2)证明:连结. 是的直径,. 在中,由(1),知是斜边的中点, . . 又,. 是的切线,. , 是的切线. (3)解:过点作于点. , . 由(1),知,. 由已知,有,,即是等腰三角形. ,. , ,即. , 四边形是矩形,. ,易证. ,即. 的半径长为,. . 解得. . ,. . 在中,,, 由勾股定理,得. . 解得(负值舍去). . [或取的中点,连结,则.易证, ,故,. 由,易知,. 由,解得. 又在中,由勾股定理,得, (舍去负值).] 例题八 2006年 已知:如图,⊙O与⊙A相交于C、D两点,A、O分别是两圆的圆心,△ABC内接于⊙O,弦CD交AB于点G,交⊙O的直径AE于点F,连结BD。 (1) 求证:△ACG∽△DBG; (2) 求证:; (3) 若⊙A、⊙O的直径分别为、15,且CG:CD=1:4,求AB和BD的长。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服