资源描述
9.1.2不等式的性质(1)
谢场中学 昌黎
[教学目标]1、经历发现不等式性质的探索过程;
2、理解不等式的性质。
3、会用不等式的基本性质解简单的不等式.
[重点难点] 不等式的性质是重点;
运用不等式的性质进行判断是难点。
[教学过程]
一、问题导入
对于比较简单的不等式,我们可以直接想出它们的解集,但是对于比较复杂的不等式,要直接想出解集来就困难了。因些,有必要讨论怎样解不等式。
和学习一元一次方程先讨论等式的性质一样,我们先来探索不等式有什么性质。
二、不等式的性质
做一做:用“>”、 “<” 填空: 请
(1)5>3 , 5+2 3+2, 5-2 3-2;
2<4, 2+1 4+1, 2-1 4-1;
观察(1),类比等式的性质,你发现了什么规律?
性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
即 如果a>b,那么a±c>b±c.
(2)5>3, 5×2 3×2, 5÷2 3÷2 ;
2<4, 2×3 4×3 , 2÷4 4÷4
观察(2),类比等式的性质,你发现了什么规律?
性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变.
即 如果a>b,c>0,那么ac>bc(或>).
(3)5>3, 5×(-2) 3×2 ; 5÷(-2) 3÷(-2) .
2<4, 2×(-3) 4×(-3 );2÷(-4) 4÷(-4)
观察(3),类比等式的性质,你发现了什么规律?
性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变。
即 如果a>b,c<0,那么ac<bc(或 <).
思考:①比较上面的性质2与性质3,看看它们有什么区别?
性质2的两边乘或除的是一个正数,不等号的方向没有变;而性质3的两边乘或除的是一个负数,不等号的方向改变了。
②比较等式的性质与不等式的性质,它们有什么异同?
等式的性质与不等式的性质1、2,除了一个说“等式仍然成立”,一个说“不等号方向不变”的说法不同外,其余都一样;而不等式的性质3说“不等号方向改变”,这与等式的性质说法不同。
三、例题
例1 利用不等式的性质填“>”, “<” :
(1)若a>b,则2a 2b;
(2)若-2y<10,则y -5;
(3)若a<b,c>0,则ac-1 bc-1;
(4)若a>b,c<0,则ac+1 bc+1。
分析:不等式的两边发生了怎样的变化?填“>”或“<”的依据是什么?
解:(1)>,(2)<,(3)>,(4)<。
例2 利用不等式的性质解下列不等式:
(1) x-7>26; (2) 3x<2x+1;
(3) >50; (4) -4x>3.
四、 课堂小结
五、课堂练习
1、判断正误:
(1)∵a < b ∴ a-b < b-b
(2)∵a < b ∴a/3<b/3
(3)∵a < b ∴ -2a < -2b
(4)∵-2a > 0 ∴ a < 0
2、根据下列已知条件,说出a与b的不等关系,并说明依据不等式哪一条性质。
(1)a-3 > b-3 (2)a/3<b/3
(3)-4a > -4b (4)1-1/2a<1-1/2b
3、填空
(1)∵ 2a > 3a ∴ a是 数
(2)∵a/3<a/2 ∴ a是 数
(3)∵ax < a且 x > 1 ∴ a是 数
作业:
配套练习
展开阅读全文