收藏 分销(赏)

专题39变式猜想问题.doc

上传人:xrp****65 文档编号:9256529 上传时间:2025-03-18 格式:DOC 页数:70 大小:4.18MB
下载 相关 举报
专题39变式猜想问题.doc_第1页
第1页 / 共70页
专题39变式猜想问题.doc_第2页
第2页 / 共70页
点击查看更多>>
资源描述
专题39 变式猜想问题 ☞解读考点 知 识 点 名师点晴 变式猜想问题 特殊的四边形的变式题 理解并掌握特殊的四边形的性质,并能解决四边形的有关变式问题 三角形有关的变式题 利用三角形的性质、全等、相似解决相关是变式问题 图形的旋转与对称变式 利用图形的旋转和有关变换解决相关的变式问题 ☞2年中考 【2015年题组】 1.(2015甘南州)如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H. (1)求证:CF=CH; (2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论. 【答案】(1)证明见试题解析;(2)四边形ACDM是菱形. 【解析】 试题分析:(1)由∠ABC=∠DCE=90°,AC=CE=CB=CD,可得∠B=∠E=45°,故有△BCF≌△ECH,得出CF=CH; (2)由△EDC绕点C旋转到∠BCE=45°,推出四边形ACDM是平行四边形,由AC=CD判断出四边形ACDM是菱形. 试题解析:(1)∵AC=CE=CB=CD,∠ACB=∠ECD=90°,∴∠A=∠B=∠D=∠E=45°.在△BCF和△ECH中,∵∠B=∠E,BC=EC,∠BCE=∠ECH,∴△BCF≌△ECH(ASA),∴CF=CH(全等三角形的对应边相等); 考点:1.菱形的判定;2.全等三角形的判定与性质;3.探究型;4.综合题. 2.(2015齐齐哈尔)如图1所示,在正方形ABCD和正方形CGEF中,点B、C、G在同一条直线上,M是线段AE的中点,DM的延长线交EF于点N,连接FM,易证:DM=FM,DM⊥FM(无需写证明过程) (1)如图2,当点B、C、F在同一条直线上,DM的延长线交EG于点N,其余条件不变,试探究线段DM与FM有怎样的关系?请写出猜想,并给予证明; (2)如图3,当点E、B、C在同一条直线上,DM的延长线交CE的延长线于点N,其余条件不变,探究线段DM与FM有怎样的关系?请直接写出猜想. 【答案】(1)DM=FM,DM⊥FM,证明见试题解析;(2)DM=FM,DM⊥FM. 【解析】 试题分析:(1)连接DF,NF,由正方形的性质,得到AD∥BC,BC∥GE,于是有AD∥GE,得到∠DAM=∠NEM,即可证得△MAD≌△MEN,得出DM=MN,AD=EN,推出△MAD≌△MEN,△DFN是等腰直角三角形,即可得到结论; (2)连接DF,NF,由正方形的性质,得到AD∥BC,AD∥CN,进而得到∠DAM=∠NEM,可证△MAD≌△MEN,有DM=MN,AD=EN,推出△MAD≌△MEN,△DFN是等腰直角三角形,于是可得到结论. 试题解析:(1)如图2,DM=FM,DM⊥FM.证明如下: 连接DF,NF,∵四边形ABCD和CGEF是正方形,∴AD∥BC,BC∥GE,∴AD∥GE,∴∠DAM=∠NEM,∵M是AE的中点,∴AM=EM,在△MAD与△MEN中,∵∠AMD=∠EMN,AM=EM,∠DAM=∠NEM,∴△MAD≌△MEN,∴DM=MN,AD=EN,∵AD=CD,∴CD=NE,∵CF=EF,∠DCF=∠DCB=90°,在△DCF与△NEF中,∵CD=EN,∠DCF=∠NEF=90°,CF=EF,∴△MAD≌△MEN,∴DF=NF,∠CFD=∠EFN,∵∠EFN+∠NFC=90°,∴∠DFC+∠CFN=90°,∴∠DFN=90°,∴DM⊥FM,DM=FM; 考点:1.四边形综合题;2.全等三角形的判定与性质;3.探究型;4.压轴题. 3.(2015牡丹江)已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M. (1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM; (提示:延长MF,交边BC的延长线于点H.) (2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明; (3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM= . 【答案】(1)证明见试题解析;(2)BE= AM+AB;(3)或. (2)BE= AM+AB.理由如下: 如图②,∵∠AEB+∠FEH=90°,∠AEB+∠EAB=90°,∴∠FEH=∠EAB,在△ABE与△EHF中,∵∠ABE=∠EHF,∠EAB=∠FEH,AE=FE,∴△ABE≌△EHF(AAS),∴AB=EH=EB+AM; 如图③∠BAE+∠AEB=90°,∠AEB+∠HEF=90°,∴∠BAE=∠HEF,在△ABE与△EHF中,∵∠ABE=∠EHF,∠BAE=∠HEF,AE=FE,∴△ABE≌△EHF(AAS),∴AB=EH,∴BE=BH+EH=AM+AB; (3)如图①,∵∠AFM=15°,∠AFE=45°,∴∠EFM=60°,∴∠EFH=120°,在△EFH中,∵∠FHE=90°,∠EFH=120°,∴此情况不存在; 考点:1.全等三角形的判定与性质;2.四边形综合题;3.正方形的性质;4.探究型;5.和差倍分;6.分类讨论;7.综合题;8.压轴题. 4.(2015临沂)如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE. (1)请判断:AF与BE的数量关系是 ,位置关系是 ; (2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予说明; (3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断. 【答案】(1)相等,互相垂直;(2)成立;(3)成立. (3)第(1)问中的结论都能成立.理由是:∵正方形ABCD中,AB=AD=CD,∴在△ADE和△DCF中,∵AE=DF,AD=CD,DE=CF,∴△ADE≌△DCF,∴∠DAE=∠CDF,又∵正方形ABCD中,∠BAD=∠ADC=90°,∴∠BAE=∠ADF,∴在△ABE和△ADF中,∵AB=DA,∠BAE=∠ADF,AE=DF,∴△ABE≌△ADF,∴BE=AF,∠ABM=∠DAF,又∵∠DAF+∠BAM=90°,∴∠ABM+∠BAM=90°,∴在△ABM中,∠AMB=180°﹣(∠ABM+∠BAM)=90°,∴BE⊥AF. 考点:1.四边形综合题;2.正方形的性质;3.全等三角形的判定与性质;4.探究型;5.综合题;6.压轴题. 5.(2015威海)如图1,直线与反比例函数()的图象交于点A,B,直线与反比例函数的图象交于点C,D,且,,顺次连接A,D,B,C,AD,BC分别交x轴于点F,H,交y轴于点E,G,连接FG,EH. (1)四边形ADBC的形状是 ; (2)如图2,若点A的坐标为(2,4),四边形AEHC是正方形,则= ; (3)如图3,若四边形EFGH为正方形,点A的坐标为(2,6),求点C的坐标; (4)判断:随着、取值的变化,四边形ADBC能否为正方形?若能,求点A的坐标;若不能,请简要说明理由. 【答案】(1)平行四边形;(2);(3)C(6,2);(4)不能. (4)根据反比例函数()的图象不能与坐标轴相交可知∠AOC<90°,故四边形ADBC的对角线不能互相垂直,由此可得出结论. 试题解析:(1)∵正比例函数与反比例函数的图象均关于原点对称,∴OA=OB,OC=OD,∴四边形ADBC是平行四边形.故答案为:平行四边形; (2)如图1,过点A作AM⊥y轴,垂足为M,过点C作CN⊥x轴,垂足为N,∵四边形AEHC是正方形,∴DA⊥AC,∴四边形ADBC是矩形,∴OA=OC.∴AM=CN,∴C(4,2),∴,解得=.故答案为:; 考点:1.反比例函数综合题;2.探究型;3.综合题;4.压轴题. 6.(2015德州)(1)问题 如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP. (2)探究 如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由. (3)应用 请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出了,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切时,求t的值. 【答案】(1)证明见试题解析;(2)成立,理由见试题解析;(3)1或5. (2)结论AD•BC=AP•BP仍然成立.理由:如图2, ∵∠BPD=∠DPC+∠BPC,∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP,∵∠DPC=∠A=∠B=θ,∴∠BPC=∠ADP,∴△ADP∽△BPC,∴,∴AD•BC=AP•BP; (3)如图3,过点D作DE⊥AB于点E.∵AD=BD=5,AB=6,∴AE=BE=3,由勾股定理可得DE=4,∵以点D为圆心,DC为半径的圆与AB相切,∴DC=DE=4,∴BC=5﹣4=1,又∵AD=BD,∴∠A=∠B,∴∠DPC=∠A=∠B,由(1)、(2)的经验可知AD•BC=AP•BP,∴5×1=t(6﹣t),解得:,,∴t的值为1秒或5秒. 考点:1.相似形综合题;2.切线的性质;3.探究型;4.阅读型;5.压轴题. 7.(2015济南)如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D. (1)直接写出∠NDE的度数; (2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由; (3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD= ,其他条件不变,求线段AM的长. 【答案】(1)∠NDE=90°;(2)不变;(3). (2)不变,在△MAC≌△NBC中,∵AC=BC,∠ACM=∠BCN,MC=NC,∴△MAC≌△NBC,∴∠N=∠AMC,又∵∠MFD=∠NFC,∠MDF=∠FCN=90°,即∠NDE=90°; (3)作GK⊥BC于K,∵∠EAC=15°,∴∠BAD=30°,∵∠ACM=60°,∴∠GCB=30°,∴∠AGC=∠ABC+∠GCB=75°,∠AMG=75°,∴AM=AG,∵△MAC≌△NBC,∴∠MAC=∠NBC,∴∠BDA=∠BCA=90°,∵BD=,∴AB=,AC=BC=,设BK=a,则GK=a,CK=,∴,∴a=1,∴KB=KG=1,BG=,AG=,∴AM=. 考点:1.几何变换综合题;2.旋转的性质;3.探究型;4.综合题;5.压轴题. 8.(2015济宁)阅读材料: 在一个三角形中,各边和它所对角的正弦的比相等,,利用上述结论可以求解如下题目: 在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b. 解:在△ABC中,∵,∴. 理解应用: 如图,甲船以每小时海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距海里. (1)判断△A1A2B2的形状,并给出证明; (2)求乙船每小时航行多少海里? 【答案】(1)等边三角形;(2). 试题解析:解:(1)△A1A2B2是等边三角形,理由如下: 连结A1B2.∵甲船以每小时海里的速度向正北方向航行,航行20分钟到达A2,∴A1A2=×=,又∵A2B2=,∠A1A2B2=60°,∴△A1A2B2是等边三角形; 考点:1.解直角三角形的应用-方向角问题;2.阅读型;3.探究型. 9.(2015烟台)【问题提出】 如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF.试证明:AB=DB+AF; 【类比探究】 (1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由; (2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由. 【答案】【问题提出】证明见试题解析;【类比探究】(1)AB=BD+AF;(2)AF=AB+BD. 【解析】 (2)首先根据点E在线段BA的延长线上,在图③的基础上将图形补充完整,然后判断出△CEF是等边三角形,即可判断出EF=EC,再根据ED=EC,可得ED=EF,∠CAF=∠BAC=60°,再判断出∠DBE=∠EAF,∠BDE=∠AEF;最后根据全等三角形判定的方法,判断出△EDB≌△FEA,即可判断出BD=AE,EB=AF,进而判断出AF=AB+BD即可. 试题解析:ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,∠BCA=60°,BE=AF,EC=CF,∴△CEF是等边三角形,∴EF=EC,∠CEF=60°,又∵ED=EC,∴ED=EF,∵△ABC是等腰三角形,∠BCA=60°,∴△ABC是等边三角形,∴∠CAF=∠CBA=60°,∴∠EAF=∠BAC+∠CAF=120°,∠DBE=120°,∠EAF=∠DBE,∵∠CAF=∠CEF=60°,∴A、E、C、F四点共圆,∴∠AEF=∠ACF,又∵ED=EC,∴∠D=∠BCE,∠BCE=∠ACF,∴∠D=∠AEF,在△EDB和△FEA中,∵∠DBE=∠EAF,∠D=∠AEF,ED=EF(AAS),∴△EDB≌△FEA,∴DB=AE,BE=AF,∵AB=AE+BE,∴AB=DB+AF. (1)AB=BD+AF; 延长EF、CA交于点G,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,∴△CEF是等边三角形,∴EF=EC,又∵ED=EC,∴ED=EF,∠EFC=∠BAC=60°,∵∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∴∠FCG=∠FEA,又∵∠FCG=∠ECD,∠D=∠ECD,∴∠D=∠FEA,由旋转的性质,可得∠CBE=∠CAF=120°,∴∠DBE=∠FAE=60°,在△EDB和△FEA中,∵∠DBE=∠EAF,∠D=∠AEF,ED=EF(AAS),∴△EDB≌△FEA,∴BD=AE,EB=AF,∴BD=FA+AB,即AB=BD﹣AF; (2)如图③,,ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,BC=AC,∴△CEF是等边三角形,∴EF=EC,又∵ED=EC,∴ED=EF,∵AB=AC,BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,又∵∠CBE=∠CAF,∴∠CAF=60°,∴∠EAF=180°﹣∠CAF﹣∠BAC=180°﹣60°﹣60°=60°∴∠DBE=∠EAF;∵ED=EC,∴∠ECD=∠EDC,∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC,又∵∠EDC=∠EBC+∠BED,∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC,∵∠AEF=∠CEF+∠BEC=60°+∠BEC,∴∠BDE=∠AEF,在△EDB和△FEA中,∵∠DBE=∠EAF,∠BDE=∠AEF,ED=EF 考点:1.几何变换综合题;2.旋转的性质;3.和差倍分;4.探究型;5.综合题;6.压轴题. 10.(2015青岛)已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题: (1)当t为何值时,PQ∥MN? (2)设△QMC的面积为y(cm2),求y与x之间的函数关系式; (3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由. (4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由. 【答案】(1);(2)(0<t<4);(3)t=2;(4). 【解析】 试题分析:(1)根据勾股定理求出AC,根据PQ∥AB,得出,,求解即可; (2)过点P作PD⊥BC于D,根据△CPD∽△CBA,得出,求出PD=,再根据S△QMC=S△QPC,得出y=S△QMC=QC•PD,再代入计算即可; (2)过点P作PD⊥BC于D,∵△CPD∽△CBA,∴,∴,∴PD=,∵PD∥BC,∴S△QMC=S△QPC,∴,即(0<t<4); (3)∵S△QMC:S四边形ABQP=1:4,∴S△QPC:S四边形ABQP=1:4,∴S△QPC:S△ABC=1:5,∴():6=1:5,整理得:,解得; (4)若PQ⊥MQ,则∠PQM=∠PDQ,∵∠MPQ=∠PQD,∴△PDQ∽△MQP,∴,∴=MP•DQ,∴=MP•DQ,∵CD=,∴DQ=CD﹣CQ==,∴,∴整理得,解得(舍去),,∴时,PQ⊥MQ. 考点:1.相似形综合题;2.动点型;3.存在型;4.综合题;5.压轴题. 11.(2015台州)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点. (1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长; (2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点; (3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使点C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画一种情形即可); (4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND和△NBE均为等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究,和的数量关系,并说明理由. 【答案】(1)BN=或;(2);(3);(4). (3)在AB上截取CE=CA;作AE点垂直平分线,截取CF=CA;作BF的垂直平分线,交AB于D即可; (4)先证明△DGH≌△NEH,得出DG=EN=b,MG=c﹣b,再证明△AGM∽△AEN,得出比例式,得出,证出,得出a=b,证出△DGH≌△CAF,得出,证出,即可得出结论. 试题解析:(1)①当MN为最大线段时,∵点 M、N是线段AB的勾股分割点,∴BN===; ②当BN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN===; 综上所述:BN=或; 点D即为所求;如图所示: (4).理由如下: 设AM=a,BN=b,MN=c,∵H是DN的中点,∴DH=HN=,∵△MND、△BNE均为等边三角形,∴∠D=∠DNE=60°,在△DGH和△NEH中,∵∠D=∠DNE,DH=HN,∠DHG=∠NHE,∴△DGH≌△NEH(ASA),∴DG=EN=b,∴MG=c﹣b,∵GM∥EN,∴△AGM∽△AEN,∴,∴,∵点 M、N是线段AB的勾股分割点,∴,∴,又∵,∴a=b,在△DGH和△CAF中,∵∠D=∠C,DG=CA,∠DGH=∠CAF,∴△DGH≌△CAF(ASA),∴,∵,∴,∴,∵,,∴. 考点:1.相似形综合题;2.分类讨论;3.新定义;4.探究型;5.综合题;6.压轴题. 12.(2015丹东)在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN=90°. (1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系; (2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°). ①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由; ②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长; ③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF的数量关系. 【答案】(1)PE=PF;(2)①成立;②;③PE=2PF,PE=(m﹣1)•PF. (2)①成立,理由:∵AC、BD是正方形ABCD的对角线,∴OA=OD,∠FAO=∠EDO=45°,∠AOD=90°,∴∠DOE+∠AOE=90°,∵∠MPN=90°,∴∠FOA+∠AOE=90°,∴∠FOA=∠DOE,在△FOA和△EOD中,∵∠FAO=∠FDO,OA=OD,∠FOA=∠DOE,∴△FOA≌△EOD,∴OE=OF,即PE=PF; 考点:1.四边形综合题;2.正方形的性质;3.相似三角形的判定与性质;4.探究型;5.和差倍分;6.综合题;7.压轴题. 13.(2015大连)在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE. (1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由; (2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示). 【答案】(1)AB=BE;(2)BD=. 试题解析:(1)如图1,连结AE.∵DE=DF,∴∠DEF=∠DFE,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB,∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四点共圆,∴∠DAE=∠DFE=∠DEF,∠ADF=∠AEF,∵∠ADF=∠DEB=∠AEF,∴∠AEF+∠AED=∠DEB+∠AED,∴∠AEB=∠DEF=∠BAE,∴AB=BE; (2)如图2,连结AE.∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四点共圆,∴∠ADF=∠AEF,∵∠DAF=90°,∴∠DEF=90°,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB,∵∠ADF=∠AEF,∴∠DEB=∠AEF,在△BDE与△AFE中,∵∠DEB=∠AEF,∠BDE=∠AFE,∴△BDE∽△AFE,∴,在直角△DEF中,∵∠DEF=90°,DE=kDF,∴EF==DF,∴=,∴BD=. 考点:1.相似三角形的判定与性质;2.探究型;3.存在型;4.综合题;5.压轴题. 14.(2015葫芦岛)在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG. (1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系; (2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系, (3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系. 【答案】(1)AG⊥DG,AG=DG;(2)AG⊥GD,AG=DG;(3)DG=AGtan. (3)延长DG与BC交于H,连接AH、AD,先证△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,再证△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得△HAD是等腰三角形,即可证得DG=AGtan. 试题解析:(1)AG⊥DG,AG=DG,证明如下:延长DG与BC交于H,连接AH、AD,∵四边形DCEF是正方形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC的中点,∴BG=EG,在△BGH和△EGD中,∵∠GBH=∠GED,∠GHB=∠GDE,BG=EG,∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DCF=90°,∴∠DCB=90°,∴∠ACD=45°,∴∠ABH=∠ACD=45°,在△ABH和△ACD中,∵AB=AC,∠ABH=∠ACD,BH=CD,∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∵∠BAH+∠HAC=90°,∴∠CAD+∠HAC=90°,即∠HAD=90°,∴AG⊥GD,AG=GD; (2)AG⊥GD,AG=DG;证明如下:延长DG与BC交于H,连接AH、AD,∵四边形DCEF是正方形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC的中点,∴BG=EG,在△BGH和△EGD中,∵∠GBH=∠GED,∠GHB=∠GDE,BG=EG,∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=∠DCF=60,∴∠ABC=60°,∠ACD=60°,∴∠ABC=∠ACD=60°,在△ABH和△ACD中,∵AB=AC,∠ABH=∠ACD,BH=CD,∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∴∠BAC=∠HAD=60°,∴AG⊥HD,∠HAG=∠DAG=30°,∴tan∠DAG=tan30°=,∴AG=DG; 考点:1.四边形综合题;2.正方形的性质;3.全等三角形的判定与性质;4.探究型;5.压轴题. 15.(2015抚顺)在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE. (1)如图①,当∠ABC=45°时,求证:AD=DE; (2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由; (3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示) 【答案】(1)证明见试题解析;(2)DE=AD;(3)AD=DE•tanα. 【解析】 试题分析:(1)过点D作DF⊥BC,交AB于点F,得出∠BDE=∠ADF,∠EBD=∠AFD,即可得到△BDE≌△FDA,从而得到AD=DE; 如图2,过点D作DG⊥BC,交AB于点G,则∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠BAC=90°,∠ABC=30°,∴∠C=60°,∵MN∥AC,∴∠EBD=180°﹣∠C=120°,∵∠ABC=30°,DG⊥BC,∴∠BGD=60°,∴∠AGD=120°,∴∠EBD=∠AGD,∴△BDE∽△GDA,∴,在Rt△BDG中,=tan30°=,∴DE=AD; (3)AD=DE•tanα;理由: 如图2,∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠EBD=90°+α,∠AGD=90°+α,∴∠EBD=∠AGD,∴△EBD∽△AGD,∴,在Rt△BDG中,=tanα,则=tanα,∴AD=DE•tanα. 考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.探究型;4.综合题;5.压轴题. 16.(2015朝阳)问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系. [探究发现] 小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌ ,得EH=ED. 在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是 . [实践运用] (1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数; (2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长. 【答案】[探究发现]△CDE;勾股;;[实践运用](1)45°;(2)正方形边长为6,MN=. (1)在Rt△ABE和Rt△AGE中,∵AB=AG,AE=AE,∴Rt△ABE≌Rt△AGE(HL),∴∠BAE=∠GAE,同理,Rt△ADF≌Rt△AGF,∴∠GAF=∠DAF,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAF=∠BAD=45°; 考点:1.几何变换综合题;2.阅读型;3.探究型;4.综合题;5.压轴题. 17.(2015本溪)如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°) (1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD ∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是 ; (2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=AD; (3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明). 【答案】(1)=,BD=CD+AD;(2)证明见试题解析;(3)BD+CD=AD. 【解析】 试题分析:(1)如图2,由∠CDP=120°,得出∠CDB=60°,则∠CDB=∠BAC=60°,所以A、B、C、D四点共圆,由圆周角定理得出∠ACD=∠ABD;在BP上截取BE=CD,连接AE.利用SAS证明△DCA≌△EBA,得到AD=AE,∠DAC=∠EAB,再证明△ADE是等边三角形,得到DE=AD,进而得出BD=CD+AD. (2)如图3,设AC与BD相交于点O,在BP上截取BE=CD,连接AE,过A作AF⊥BD于F.先证△DOC∽△AOB,得到∠DCA=∠EBA.再利用SAS证明△DCA≌△EBA,得到AD=AE,∠DAC=∠EAB.由∠CAB=∠CAE+∠EAB=120°,得出∠DAE=120°,由等腰三角形的性质及三角形内角和定理求出∠ADE=∠AED=30°.解Rt△ADF,得出DF=AD,那么DE=2DF=AD,进而得出BD=DE+BE=AD+CD,即BD﹣CD=AD; (3)BD+CD=AD. 考点:1.几何变换综合题;2.探究型;3.和差倍分;4.全等三角形的判定与性质;5.压轴题. 18.(2015锦州)如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合). (1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是 ; (2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明; (3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明. 【答案】(1)DE+DF=AD;(2)证明见试题解析;(3)①当点E落在AD上时,DE+DF=AD,②当点E落在AD的延长线上时,DF-DE =AD. (3)①当点E落在AD上时,DE+DF=AD,②当点E落在AD的延长线上时,DF-DE =AD. 试题解析:(1)正方形ABCD的对角线AC,BD交于点P,∴PA=PD,∠PAE=∠PDF=45°,∵∠APE+∠EPD=∠DPF+∠EPD=90°,∴∠APE=∠DPF,在△APE和△DPF中,∵∠APE=∠DPF,PA=PD,∠PAE=∠PDF,∴△APE≌△DPF(ASA),∴AE=DF,∴DE+DF=AD, (2)如图②,取AD的中点M,连接PM,∵四边形ABCD为∠ADC=120°的菱形,∴BD=AD,∠DAP=30°,∠ADP=∠CDP=60°,∴△MDP是等边三角形,∴PM=PD,∠PME=∠PDF=60°,∵∠PAM=30°,∴∠MPD=60°,∵∠QPN=60°,∴∠MPE=∠FPD,在△MPE和△FPD中,∵∠PME=∠PDF,PM=PD,∠MPE=∠FPD,∴△MPE≌△FPD(ASA),∴ME=DF,∴DE+DF=AD; 考点:1.四边形综合题;2.分类讨论;3.和差倍分;4.探究型;5.压轴题. 19.(2015三明)在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°. (1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF; (2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:; (3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系. 【答案】(1)证明见试题解析;(2)证明见试题解析;(3). 【解析】 试题分析:(1)由旋转的性质可知AF=AG,∠EAF=∠GAE=45°,即可得到△AEG≌△AEF; (2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则有EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,再证明∠GME=90°,MG=NF,由勾股定理得到,等量代换即可得到; (3)延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,得到EF=HE,DF=GH,BE=BM,由(2)知HM⊥ME,得到,,,从而得到结论. (3).证明如下: 如图3所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,∴EF=HE,DF=GH,BE=BM,由(2)知HM⊥ME,∴,,,∴. 考点:1.全等三角形的判定与性质;2.四边形综合题;3.探究型;4.旋转的性质;5.和差倍分;6.压轴题. 【2014年题组】 1.(2014年浙江温州卷)如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O出发,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服