资源描述
圆锥曲线大题专题
2016年:
一卷20. (本小题满分12分)
设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.
(I)证明为定值,并写出点E的轨迹方程;
(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.
二卷(20)(本小题满分12分)
已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.
(I)当t=4,时,求△AMN的面积;
(II)当时,求k的取值范围.
2017年:
二卷20. (12分)
设O为坐标原点,动点M在椭圆C:上,过M做x轴的垂线,垂足为N,点P满足.
(1) 求点P的轨迹方程;
(2) 设点Q在直线x=-3上,且.证明:过点P且垂直于OQ的直线l过C的左焦点F.
三卷20.(12分)
已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点P(4,-2),求直线l与圆M的方程.
2018年:
一卷:
19.(12分)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.
(1)当与轴垂直时,求直线的方程;
(2)设为坐标原点,证明:.
二卷19.(12分)
设抛物线的焦点为,过且斜率为的直线与交于,两点,.
(1)求的方程;
(2)求过点,且与的准线相切的圆的方程.
2019年:
一卷: 19.(12分)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.
(1)若|AF|+|BF|=4,求l的方程;
(2)若,求|AB|.
二卷21.(12分)已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明:是直角三角形;
(ii)求面积的最大值.
三卷17.(本小题满分14分)
如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(–1、0),
F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.
已知DF1=.
(1)求椭圆C的标准方程;
(2)求点E的坐标.
答案
2016年:
20.(本小题满分12分)
解:(Ⅰ)因为,,故,
所以,故.
又圆的标准方程为,从而,所以.
由题设得,,,由椭圆定义可得点的轨迹方程为:
().
(Ⅱ)当与轴不垂直时,设的方程为,,.
由得.
则,.
所以.
过点且与垂直的直线:,到的距离为,所以
.故四边形的面积
.
可得当与轴不垂直时,四边形面积的取值范围为.
当与轴垂直时,其方程为,,,四边形的面积为12.
综上,四边形面积的取值范围为.
二卷
20.(本小题满分12分)
【答案】(Ⅰ);(Ⅱ).
【解析】
试题分析:(Ⅰ)先求直线的方程,再求点的纵坐标,最后求的面积;(Ⅱ)设,,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求.
试题解析:(I)设,则由题意知,当时,的方程为,.
由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.
将代入得.解得或,所以.
因此的面积.
(II)由题意,,.
将直线的方程代入得.
由得,故.
由题设,直线的方程为,故同理可得,
由得,即.
当时上式不成立,
因此.等价于,
即.由此得,或,解得.
因此的取值范围是.
考点:椭圆的性质,直线与椭圆的位置关系.
2017年:
二卷 :
20.解(1)设P(x,y),M(x0,y0),设N(x0,0),
由得
因为M(x0,y0)在C上,所以
因此点P的轨迹方程为
(2)由题意知F(-1,0).设Q(-3,t),P(m,n),则
,
由得,又由(1)知,故
3+3m-tn=0
所以,即又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.
三卷: 20.解
(1)设
由可得
又=4
因此OA的斜率与OB的斜率之积为
所以OA⊥OB
故坐标原点O在圆M上.
(2)由(1)可得
故圆心M的坐标为,圆M的半径
由于圆M过点P(4,-2),因此,故
即
由(1)可得,
所以,解得.
当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为
当时,直线l的方程为,圆心M的坐标为,圆M的半径为,圆M的方程为
2018年:
一卷:
19.(12分)解:(1)由已知得,l的方程为x=1.
由已知可得,点A的坐标为或.
所以AM的方程为或.
(2)当l与x轴重合时,.
当l与x轴垂直时,OM为AB的垂直平分线,所以.
当l与x轴不重合也不垂直时,设l的方程为,,
则,直线MA,MB的斜率之和为.
由得
.
将代入得
.
所以,.
则.
从而,故MA,MB的倾斜角互补,所以.
综上,.
二卷:
19.(12分)解:(1)由题意得,l的方程为.
设,
由得.
,故.
所以.
由题设知,解得(舍去),.
因此l的方程为.
(2)由(1)得AB的中点坐标为,所以AB的垂直平分线方程为,即.
设所求圆的圆心坐标为,则
解得或
因此所求圆的方程为或.
2019年:
一卷:19.解:设直线.
(1)由题设得,故,由题设可得.
由,可得,则.
从而,得.
所以的方程为.
(2)由可得.
由,可得.
所以.从而,故.
代入的方程得.
故.
二卷 21.解:(1)由题设得,化简得,所以C为中心在坐标原点,焦点在x轴上的椭圆,不含左右顶点.
(2)(i)设直线PQ的斜率为k,则其方程为.
由得.
记,则.
于是直线的斜率为,方程为.
由得
.①
设,则和是方程①的解,故,由此得.
从而直线的斜率为.
所以,即是直角三角形.
(ii)由(i)得,,
所以△PQG的面积.
设t=k+,则由k>0得t≥2,当且仅当k=1时取等号.
因为在[2,+∞)单调递减,所以当t=2,即k=1时,S取得最大值,最大值为.因此,△PQG面积的最大值为.
江苏卷 17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分.
解:(1)设椭圆C的焦距为2c.
因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.
又因为DF1=,AF2⊥x轴,所以DF2=,
因此2a=DF1+DF2=4,从而a=2.
由b2=a2-c2,得b2=3.
因此,椭圆C的标准方程为.
(2)解法一:
由(1)知,椭圆C:,a=2,
因为AF2⊥x轴,所以点A的横坐标为1.
将x=1代入圆F2的方程(x-1) 2+y2=16,解得y=±4.
因为点A在x轴上方,所以A(1,4).
又F1(-1,0),所以直线AF1:y=2x+2.
由,得,
解得或.
将代入,得 ,
因此.又F2(1,0),所以直线BF2:.
由,得,解得或.
又因为E是线段BF2与椭圆的交点,所以.
将代入,得.因此.
解法二:
由(1)知,椭圆C:.如图,连结EF1.
因为BF2=2a,EF1+EF2=2a,所以EF1=EB,
从而∠BF1E=∠B.
因为F2A=F2B,所以∠A=∠B,
所以∠A=∠BF1E,从而EF1∥F2A.
因为AF2⊥x轴,所以EF1⊥x轴.
因为F1(-1,0),由,得.
又因为E是线段BF2与椭圆的交点,所以.
因此.
展开阅读全文