ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:819KB ,
资源ID:9246591      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9246591.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(圆锥曲线大题专题.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

圆锥曲线大题专题.doc

1、 圆锥曲线大题专题 2016年: 一卷20. (本小题满分12分) 设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E. (I)证明为定值,并写出点E的轨迹方程; (II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围. 二卷(20)(本小题满分12分) 已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA. (I)当t=4,时,求△AMN的面积; (II)当时,求k的取值范围.

2、 2017年: 二卷20. (12分) 设O为坐标原点,动点M在椭圆C:上,过M做x轴的垂线,垂足为N,点P满足. (1) 求点P的轨迹方程; (2) 设点Q在直线x=-3上,且.证明:过点P且垂直于OQ的直线l过C的左焦点F. 三卷20.(12分) 已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆. (1)证明:坐标原点O在圆M上; (2)设圆M过点P(4,-2),求直线l与圆M的方程. 2018年: 一卷: 19.(12分)设椭圆的右焦点为,过的直线与交于两点,点的坐标为. (1)当与轴垂直时,求直线的方程; (2

3、设为坐标原点,证明:. 二卷19.(12分) 设抛物线的焦点为,过且斜率为的直线与交于,两点,. (1)求的方程; (2)求过点,且与的准线相切的圆的方程. 2019年: 一卷: 19.(12分)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P. (1)若|AF|+|BF|=4,求l的方程; (2)若,求|AB|. 二卷21.(12分)已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C. (1)求C的方程,并说明C是什么曲线; (2)过坐标原点的直线交C于P,Q两点,点P在第一象

4、限,PE⊥x轴,垂足为E,连结QE并延长交C于点G. (i)证明:是直角三角形; (ii)求面积的最大值. 三卷17.(本小题满分14分) 如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(–1、0), F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1. 已知DF1=. (1)求椭圆C的标准方程; (2)求点E的坐标. 答案 2016年: 20.(本小题满分12分) 解:(Ⅰ)因为,,故, 所以,故. 又圆的标准方程为,从而,所以. 由题设得,,

5、由椭圆定义可得点的轨迹方程为: (). (Ⅱ)当与轴不垂直时,设的方程为,,. 由得. 则,. 所以. 过点且与垂直的直线:,到的距离为,所以 .故四边形的面积 . 可得当与轴不垂直时,四边形面积的取值范围为. 当与轴垂直时,其方程为,,,四边形的面积为12. 综上,四边形面积的取值范围为. 二卷 20.(本小题满分12分) 【答案】(Ⅰ);(Ⅱ). 【解析】 试题分析:(Ⅰ)先求直线的方程,再求点的纵坐标,最后求的面积;(Ⅱ)设,,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求. 试题解析:(I)设,则由题意知,当时,的方程为

6、 由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为. 将代入得.解得或,所以. 因此的面积. (II)由题意,,. 将直线的方程代入得. 由得,故. 由题设,直线的方程为,故同理可得, 由得,即. 当时上式不成立, 因此.等价于, 即.由此得,或,解得. 因此的取值范围是. 考点:椭圆的性质,直线与椭圆的位置关系. 2017年: 二卷 : 20.解(1)设P(x,y),M(x0,y0),设N(x0,0), 由得 因为M(x0,y0)在C上,所以 因此点P的轨迹方程为 (2)由题意知F(-1,0).设Q(-3,t),P(m,n),则

7、 由得,又由(1)知,故 3+3m-tn=0 所以,即又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F. 三卷: 20.解 (1)设 由可得 又=4 因此OA的斜率与OB的斜率之积为 所以OA⊥OB 故坐标原点O在圆M上. (2)由(1)可得 故圆心M的坐标为,圆M的半径 由于圆M过点P(4,-2),因此,故 即 由(1)可得, 所以,解得. 当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为 当时,直线l的方程为,圆心M的坐标为,圆M的半径为,圆M的方程为 2018年:

8、一卷: 19.(12分)解:(1)由已知得,l的方程为x=1. 由已知可得,点A的坐标为或. 所以AM的方程为或. (2)当l与x轴重合时,. 当l与x轴垂直时,OM为AB的垂直平分线,所以. 当l与x轴不重合也不垂直时,设l的方程为,, 则,直线MA,MB的斜率之和为. 由得 . 将代入得 . 所以,. 则. 从而,故MA,MB的倾斜角互补,所以. 综上,. 二卷: 19.(12分)解:(1)由题意得,l的方程为. 设, 由得. ,故. 所以. 由题设知,解得(舍去),. 因此l的方程为. (2)由(1)得AB的中点坐标为,所以AB的垂直平分线

9、方程为,即. 设所求圆的圆心坐标为,则 解得或 因此所求圆的方程为或. 2019年: 一卷:19.解:设直线. (1)由题设得,故,由题设可得. 由,可得,则. 从而,得. 所以的方程为. (2)由可得. 由,可得. 所以.从而,故. 代入的方程得. 故. 二卷 21.解:(1)由题设得,化简得,所以C为中心在坐标原点,焦点在x轴上的椭圆,不含左右顶点. (2)(i)设直线PQ的斜率为k,则其方程为. 由得. 记,则. 于是直线的斜率为,方程为. 由得 .① 设,则和是方程①的解,故,由此得. 从而直线的斜率为. 所以,即是直角三角形. (ii

10、由(i)得,, 所以△PQG的面积. 设t=k+,则由k>0得t≥2,当且仅当k=1时取等号. 因为在[2,+∞)单调递减,所以当t=2,即k=1时,S取得最大值,最大值为.因此,△PQG面积的最大值为. 江苏卷 17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分. 解:(1)设椭圆C的焦距为2c. 因为F1(-1,0),F2(1,0),所以F1F2=2,c=1. 又因为DF1=,AF2⊥x轴,所以DF2=, 因此2a=DF1+DF2=4,从而a=2. 由b2=a2-

11、c2,得b2=3. 因此,椭圆C的标准方程为. (2)解法一: 由(1)知,椭圆C:,a=2, 因为AF2⊥x轴,所以点A的横坐标为1. 将x=1代入圆F2的方程(x-1) 2+y2=16,解得y=±4. 因为点A在x轴上方,所以A(1,4). 又F1(-1,0),所以直线AF1:y=2x+2. 由,得, 解得或. 将代入,得 , 因此.又F2(1,0),所以直线BF2:. 由,得,解得或. 又因为E是线段BF2与椭圆的交点,所以. 将代入,得.因此. 解法二: 由(1)知,椭圆C:.如图,连结EF1. 因为BF2=2a,EF1+EF2=2a,所以EF1=EB, 从而∠BF1E=∠B. 因为F2A=F2B,所以∠A=∠B, 所以∠A=∠BF1E,从而EF1∥F2A. 因为AF2⊥x轴,所以EF1⊥x轴. 因为F1(-1,0),由,得. 又因为E是线段BF2与椭圆的交点,所以. 因此.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服