收藏 分销(赏)

概率论参考资料.doc

上传人:pc****0 文档编号:8990144 上传时间:2025-03-10 格式:DOC 页数:12 大小:445.50KB
下载 相关 举报
概率论参考资料.doc_第1页
第1页 / 共12页
概率论参考资料.doc_第2页
第2页 / 共12页
点击查看更多>>
资源描述
习题一 4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(). 【解】 P()=1-P(AB)=1-[P(A)-P(A-B)] =1-[0.7-0.3]=0.6 23.设P()=0.3,P(B)=0.4,P(A)=0.5,求P(B|A∪) 【解】 25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A={被调查学生是努力学习的},则={被调查学生是不努力学习的}.由题意知P(A)=0.8,P()=0.2,又设B={被调查学生考试及格}.由题意知P(B|A)=0.9,P(|)=0.9,故由贝叶斯公式知 (1) 即考试及格的学生中不努力学习的学生仅占2.702% (2) 即考试不及格的学生中努力学习的学生占30.77%. 30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设Ai={第i道工序出次品}(i=1,2,3,4). 34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A={飞机被击落},Bi={恰有i人击中飞机},i=0,1,2,3 由全概率公式,得 =(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+ (0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.458 35.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率. (2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) (2) 习题二 14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率; (2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑. (1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X,则X~b(2500,0.002),则所求概率为 由于n很大,p很小,λ=np=5,故用泊松近似,有 (2) P(保险公司获利不少于10000) 即保险公司获利不少于10000元的概率在98%以上 P(保险公司获利不少于20000) 即保险公司获利不少于20000元的概率约为62% 16.设某种仪器内装有三只同样的电子管,电子管使用寿命X的密度函数为 f(x)= 求:(1) 在开始150小时内没有电子管损坏的概率; (2) 在这段时间内有一只电子管损坏的概率; (3) F(x). 【解】 (1) (2) (3) 当x<100时F(x)=0 当x≥100时 故 19.设顾客在某银行的窗口等待服务的时间X(以分钟计)服从指数分布.某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,试写出Y的分布律,并求P{Y≥1}. 【解】依题意知,即其密度函数为 该顾客未等到服务而离开的概率为 ,即其分布律为 21.设X~N(3,22), (1) 求P{2<X≤5},P{-4<X≤10},P{|X|>2},P{X>3}; (2) 确定c使P{X>c}=P{X≤c}. 【解】(1) (2) c=3 30.设X~N(0,1). (1) 求Y=eX的概率密度; (2) 求Y=2X2+1的概率密度; (3) 求Y=|X|的概率密度. 【解】(1) 当y≤0时, 当y>0时, 故 (2) 当y≤1时 当y>1时 故 (3) 当y≤0时 当y>0时 故 47.某地抽样调查结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分至84分之间的概率. 【解】设X为考生的外语成绩,则X~N(72,σ2) 故 查表知 ,即σ=12 从而X~N(72,122) 故 习题三 9.设二维随机变量(X,Y)的概率密度为 f(x,y)= 求边缘概率密度. 【解】 题10图 10.设二维随机变量(X,Y)的概率密度为 f(x,y)= (1) 试确定常数c; (2) 求边缘概率密度. 【解】(1) 得. (2) 13.设二维随机变量(X,Y)的联合分布律为 X Y 2 5 8 0.4 0.8 0.15 0.30 0.35 0.05 0.12 0.03 (1)求关于X和关于Y的边缘分布; (2) X与Y是否相互独立? 【解】(1)X和Y的边缘分布如下表 X Y 2 5 8 P{Y=yi} 0.4 0.15 0.30 0.35 0.8 0.8 0.05 0.12 0.03 0.2 0.2 0.42 0.38 (2) 因 故X与Y不独立. 14.设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为 fY(y)= (1)求X和Y的联合概率密度; (2) 设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率. 【解】(1) 因 故 题14图 (2) 方程有实根的条件是 故 X2≥Y, 从而方程有实根的概率为: 22.设随机变量X和Y相互独立,下表列出了二维随机变量(X,Y)联合分布律及关于X和Y的边缘分布律中的部分数值.试将其余数值填入表中的空白处. X Y y1 y2 y3 P{X=xi}=pi x1 x2 1/8 1/8 P{Y=yj}=pj 1/6 1 【解】因, 故 从而 而X与Y独立,故, 从而 即: 又 即 从而 同理 又,故. 同理 从而 故 Y X 1 习题四 11.设随机变量X的概率密度为 f(x)= 求(1) 系数c;(2) E(X);(3) D(X). 【解】(1) 由得. (2) (3) 故 13.一工厂生产某种设备的寿命X(以年计)服从指数分布,概率密度为 f(x)= 为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y只有两个值:100元和 -200元 故 (元). 17.设随机变量(X,Y)的分布律为 X Y -1 0 1 -1 0 1 1/8 1/8 1/8 1/8 0 1/8 1/8 1/8 1/8 验证X和Y是不相关的,但X和Y不是相互独立的. 【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律易求得X,Y及XY的分布律,其分布律如下表 12 X -1 0 1 P Y -1 0 1 P XY -1 0 1 P 由期望定义易得E(X)=E(Y)=E(XY)=0. 从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0, 即X与Y的相关系数为0,从而X和Y是不相关的. 又 从而X与Y不是相互独立的. 18.设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov(X,Y),ρXY. 【解】如图,SD=,故(X,Y)的概率密度为 题18图 从而 同理 而 所以 . 从而 34.设随机变量X和Y的联合概率分布为 Y X -1 0 1 0 1 0.07 0.18 0.15 0.08 0.32 0.20 试求X和Y的相关系数ρ. 【解】由已知知E(X)=0.6,E(Y)=0.2,而XY的概率分布为 YX -1 0 1 P 0.08 0.72 0.2 所以E(XY)= -0.08+0.2=0.12 Cov(X,Y)=E(XY) -E(X)·E(Y)=0.12 -0.6×0.2=0 从而 =0
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服