ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:445.50KB ,
资源ID:8990144      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8990144.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(概率论参考资料.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

概率论参考资料.doc

1、习题一 4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(). 【解】 P()=1-P(AB)=1-[P(A)-P(A-B)] =1-[0.7-0.3]=0.6 23.设P()=0.3,P(B)=0.4,P(A)=0.5,求P(B|A∪) 【解】 25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人?

2、 【解】设A={被调查学生是努力学习的},则={被调查学生是不努力学习的}.由题意知P(A)=0.8,P()=0.2,又设B={被调查学生考试及格}.由题意知P(B|A)=0.9,P(|)=0.9,故由贝叶斯公式知 (1) 即考试及格的学生中不努力学习的学生仅占2.702% (2) 即考试不及格的学生中努力学习的学生占30.77%. 30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】

3、设Ai={第i道工序出次品}(i=1,2,3,4). 34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A={飞机被击落},Bi={恰有i人击中飞机},i=0,1,2,3 由全概率公式,得 =(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×

4、0.7)0.2+ (0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.458 35.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率. (2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) (2) 习题二 14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在

5、1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率; (2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑. (1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X,则X~b(2500,0.002),则所求概率为 由于n很大,p很小,λ=np=5,故用泊松近似,有 (2) P(保险公司获利不少于10000) 即保险公司获利不少于10000元的概率在98%以上 P(保险公司获利不少于20000)

6、 即保险公司获利不少于20000元的概率约为62% 16.设某种仪器内装有三只同样的电子管,电子管使用寿命X的密度函数为 f(x)= 求:(1) 在开始150小时内没有电子管损坏的概率; (2) 在这段时间内有一只电子管损坏的概率; (3) F(x). 【解】 (1) (2) (3) 当x<100时F(x)=0 当x≥100时 故 19.设顾客在某银行的窗口等待服务的时间X(以分钟计)

7、服从指数分布.某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,试写出Y的分布律,并求P{Y≥1}. 【解】依题意知,即其密度函数为 该顾客未等到服务而离开的概率为 ,即其分布律为 21.设X~N(3,22), (1) 求P{2

8、 (2) c=3 30.设X~N(0,1). (1) 求Y=eX的概率密度; (2) 求Y=2X2+1的概率密度; (3) 求Y=|X|的概率密度. 【解】(1) 当y≤0时, 当y>0时, 故 (2) 当y≤1时 当y>1时 故 (3) 当y≤0时 当y>0时 故

9、 47.某地抽样调查结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分至84分之间的概率. 【解】设X为考生的外语成绩,则X~N(72,σ2) 故 查表知 ,即σ=12 从而X~N(72,122) 故 习题三 9.设二维随机变量(X,Y)的概率密度为 f(x,y)= 求边缘概率密度. 【解】

10、 题10图 10.设二维随机变量(X,Y)的概率密度为 f(x,y)= (1) 试确定常数c; (2) 求边缘概率密度. 【解】(1) 得. (2) 13.设二维随机变量(X,Y)的联合分布律为 X Y 2 5 8 0.4 0.8 0.15 0.30 0.35 0.05 0.12 0.03 (1)求关于X和关于Y的

11、边缘分布; (2) X与Y是否相互独立? 【解】(1)X和Y的边缘分布如下表 X Y 2 5 8 P{Y=yi} 0.4 0.15 0.30 0.35 0.8 0.8 0.05 0.12 0.03 0.2 0.2 0.42 0.38 (2) 因 故X与Y不独立. 14.设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为 fY(y)= (1)求X和Y的联合概率密度; (2) 设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率. 【解】(1) 因 故 题14图 (2)

12、 方程有实根的条件是 故 X2≥Y, 从而方程有实根的概率为: 22.设随机变量X和Y相互独立,下表列出了二维随机变量(X,Y)联合分布律及关于X和Y的边缘分布律中的部分数值.试将其余数值填入表中的空白处. X Y y1 y2 y3 P{X=xi}=pi x1 x2 1/8 1/8 P{Y=yj}=pj 1/6 1 【解】因, 故 从而

13、而X与Y独立,故, 从而 即: 又 即 从而 同理 又,故. 同理 从而 故 Y X 1 习题四 11.设随机变量X的概率密度为 f(x)= 求(1) 系数c;(2) E(X);(3) D(X). 【解】(1) 由得. (2) (3) 故 13.一工厂生产某种设备的寿命X(以年计)服从指数分布,概率密度为 f(x)= 为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利10

14、0元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y只有两个值:100元和 -200元 故 (元). 17.设随机变量(X,Y)的分布律为 X Y -1 0 1 -1 0 1 1/8 1/8 1/8 1/8 0 1/8 1/8 1/8 1/8 验证X和Y是不相关的,但X和Y

15、不是相互独立的. 【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律易求得X,Y及XY的分布律,其分布律如下表 12 X -1 0 1 P Y -1 0 1 P XY -1 0 1 P 由期望定义易得E(X)=E(Y)=E(XY)=0. 从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0, 即X与Y的相关系数为0,从而X和Y是不相关的. 又 从而X与Y不是相互独立的. 18.设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域

16、上服从均匀分布,求Cov(X,Y),ρXY. 【解】如图,SD=,故(X,Y)的概率密度为 题18图 从而 同理 而 所以 . 从而 34.设随机变量X和Y的联合概率分布为 Y X -1 0 1 0 1 0.07 0.18 0.15 0.08 0.32 0.20 试求X和Y的相关系数ρ. 【解】由已知知E(X)=0.6,E(Y)=0.2,而XY的概率分布为 YX -1 0 1 P 0.08 0.72 0.2 所以E(XY)= -0.08+0.2=0.12 Cov(X,Y)=E(XY) -E(X)·E(Y)=0.12 -0.6×0.2=0 从而 =0

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服