收藏 分销(赏)

蝴蝶定理的八种证明及三种推广.doc

上传人:pc****0 文档编号:8986253 上传时间:2025-03-10 格式:DOC 页数:5 大小:389.50KB 下载积分:10 金币
下载 相关 举报
蝴蝶定理的八种证明及三种推广.doc_第1页
第1页 / 共5页
蝴蝶定理的八种证明及三种推广.doc_第2页
第2页 / 共5页


点击查看更多>>
资源描述
蝴蝶定理的证明 定理:设M为圆内弦PQ的中点,过M作弦AB和CD。设AD和BC各相交PQ于点E和F,则M是EF的中点。 在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的帮助下,翩翩起舞! 证法1 如图2,作,则垂足分别为的中点,且由于 得共圆;共圆。 则 又,为的中点,从而, 则 ,于是。 证法2 过作关于直线的对称点,如图3所示,则 联结交圆于,则与关于对称,即 。又 故四点共圆,即 而 由、知,,故。 证法3 如图4,设直线与交于点。对及截线,及截线分别应用梅涅劳斯定理,有 , 由上述两式相乘,并注意到 得 化简上式后得。[2] 2 不使用辅助线的证明方法 单纯的利用三角函数也可以完成蝴蝶定理的证明。 证法 4 (Steven给出)如图5,并令 由,即 化简得 即 ,从而 。 证法 5 令,以点为视点,对和分别应用张角定理,有 上述两式相减,得 设分别为的中点,由,有 于是 ,而,知,故。 (二) 运用解析几何的知识完成蝴蝶定理的证明 在数学中用函数的方法解决几何问题也是非常重要的方法,所以解析几何上夜出现了许多漂亮的证明蝴蝶定理的方法,以下列出几个例子以供参考。 证法 6 (单墫教授给出)如图6,建立直角坐标系,则圆的方程可设为 。直线的方程为,直线的方程为。 由于圆和两相交直线组成了二次曲线系,其方程为 令,知点和点的横坐标满足二次方程, 由于的系数为,则两根和之和为,即,故。[5] 证法 7 如图7建立平面直角坐标系,则圆的方程可写为 直线、的方程可写为,。 又设的坐标为,则分别是二次方程 的一根。在轴上的截距为 。 同理,在轴上的截距为。注意到是方程的两根,是方程的两根,所以,从而易得 ,即。 证法 8 如图8,以为极点,为极轴建立极坐标系。因三点共线,令,则 即 作于,作于。注意到 由与可得 将代入可得,即。 - 5 - 二 蝴蝶定理的推广和猜想 (一) 猜想 1 在蝴蝶定理中, P、 Q分别是 ED、 CF和AB的交点. 如果 P、 Q分别是 CE、 DF和AB延长线的交点,我们猜想, 仍可能会有 PM = QM . 推论 1 过圆的弦 AB的中点M引任意两条弦 CD与 EF, 连结 CE、 DF并延长交 AB的延长线于 P、 Q. 求证: PM = QM. 证明;设AM =BM = a, PM = x,QM = y ;∠PM E = ∠QM F =α,∠PCM = ∠DFM =β ; ∠CM E = ∠DM F =γ,∠QDM = ∠CEM =δ ; 记 △PM E, △QM F,△PMC, △QMD的面积分别为 S1 , S2 , S3 , S4. 则由恒等式S2·S3·S4·S1= 1知M P·M Esin αMQ·M Fsinα · FQ·FM sin (π - β)CP·CM sin β ··MCsin (α+γ)·MD sin (α+γ)· DQ·DM sin δEP·EM sin (π - δ )=·DQ·M P2·EP·MQ2 = 1,即 QF·QD·M P2= PC·PE·MQ2. ② 又由割线定理知PC·PE = PA·PB = ( x - a) ( x + a) = x2- a2,QF·QD = QB·QA = ( y - a) ( y + a) = y2- a2.代入 ②式, 得 ( y2- a2) x2= ( x2- a2) y2. 即 a2x2= a2y2. 由于 a ≠0, x, y > 0,所以 x = y .即 PM = QM.[3] (二)猜想 2 在蝴蝶定理中, 显然 OM是 AB的垂线 (O是圆心) , 那么, 我们可以猜想,如果在保持 OM ⊥AB的前提下将圆 O的弦 AB移至圆外, 仍可能会有 PM =QM . 推论 2 已知直线 AB与 ⊙O相离. OM ⊥AB, M 为垂足. 过 M作 ⊙O任意两条割线 MC, M E分别交 ⊙O于 C, D和 E, F. 连结DE,FC并延长分别交 AB 于 P, Q. 求证: PM = QM. 证明:过 F作 FK∥AB, 交直线 OM于 N,交 ⊙O于 K . 连结 M K交 ⊙O于 G. 连结 GQ, GC. 由于 ON ⊥FK,故有 FN = KN,从而M F =M K(因为M在 FK的垂直平分线上) . 又由割线定理知M E·M F = MG·M K .因此 M E = MG. ③ 又由 ∠FMN = ∠KMN, OM ⊥AB,知∠EM P = ∠GMQ. ④ 从 ∠CQM = ∠CFK = ∠CGK知 ∠CGM +∠CQM= 180° , 从而 G,M, Q, C四点共圆. 所以 ∠MGQ =∠MCQ. 又由于 ∠M EP = ∠DEF = ∠DCF = ∠MCQ, 知∠M EP = ∠MGQ. ⑤ 由 ③、 ④、 ⑤知 △PM E ≌△QMG.所以 PM = QM. (三)猜想 3 既然蝴蝶定理对于双曲线是成立的, 而双曲线是两条不相交的曲线, 那么, 我们可以猜想,如果把两条不相交的曲线换成两条不相交的直线 (也即是两条平行线) , 仍可能会有 PM = QM . 推论 3  设点 A、 B分别在两条平行线 l 1、 l 2上,过AB的中点M任意作两条直线 CD和 EF分别交 l 1、 l 2于C、 D和 E、 F, 连结 ED、 CF交 AB于 P、 Q. 求证: PM =QM. 证明:由于 l 1 ∥ l 2 ,M 平分AB, 从而利用 △MAC≌△MBD知M平分 CD, 利用 △MAE≌△MBF知 M平分 EF. 在四边形 CEDF中, 由对角线相互平分知 CEDF是平行四边形,从而 DE ∥CF. 又由于 M平分 EF,故利用 △M EP ≌△M FQ知 PM = QM。[4]
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服