收藏 分销(赏)

WINCE60启动过程.doc

上传人:s4****5z 文档编号:8897441 上传时间:2025-03-07 格式:DOC 页数:35 大小:61KB 下载积分:10 金币
下载 相关 举报
WINCE60启动过程.doc_第1页
第1页 / 共35页
WINCE60启动过程.doc_第2页
第2页 / 共35页


点击查看更多>>
资源描述
Windows CE 6.0 启动过程分析 在Windows CE 6.0中,内核(Kenerl)和OEM代码被分成oal.exe、kernel.dll和kitl.dll三个部分,其中启动代码(startup)和 OAL层的实现部分不再与内核链接生成NK.exe,取而代之的是启动代码(startup)和硬件相关且独立于内核的OAL层的实现部分编译成 oal.exe,而与内核相关且独立于硬件的OAL层代码包含在kernel.dll中;内核无关传输层(KITL)的支持代码从OAL层分离出来编译成 kitl.dll。     从表面上看,好像只是代码重新组合了一下,从帮助文档中BSP的移植过程看好像也是这么一回事,实际上,整个Windows CE 6.0内核布局发生了很大的改变。Windows CE 6.0的启动过程也是如此,如果你想按照Windows CE 5.0的启动顺序去分析Windows CE 6.0的启动顺序,可能会走到一个死胡同。主要是因为Windows CE 6.0在启动过程中调用了kernel.dll和kitl.dll两个动态链接库的原因,而且Windows CE6.0不再编译生成KernKitlProf.exe内核文件。     从Windows CE 6.0的帮助文档可以看出,WinCE6.0的启动只与oal.exe和kernel.dll有关,至于kitl.dll,只有将操作系统编译成具有 KITL功能时才用到。分析Windows CE 6.0的启动过程实际上找到编译oal.exe和kernel.dll的源码位置。     首先看一下将WinCE6.0编译成诸如WinCE5.0所说的基本内核情况,即kern.exe。对于oal.exe源码位置比较容易找到,因为 oal.exe是启动代码与硬件相关的OAL层实现文件编译而成,所以只需在BSP的OAL目录中便能找到。而对于kernel.dll,在BSP目录结构中,基本上无法找到kernel.dll的编译文件,所以必须从其他方面着手。     下面为WinCE 6.0的编译日志输出文件:makeimg.out在文件复制过程的一部分: Copying E:\WINCE600\OSDesigns\xsbase270\xsbase270\RelDir\XSBase270_ARMV4I_Release\oal.exe   to E:\WINCE600\OSDesigns\xsbase270\xsbase270\RelDir\XSBase270_ARMV4I_Release\nk.exe for debugger Copying E:\WINCE600\OSDesigns\xsbase270\xsbase270\RelDir\XSBase270_ARMV4I_Release\kern.dll   to E:\WINCE600\OSDesigns\xsbase270\xsbase270\RelDir\XSBase270_ARMV4I_Release\kernel.dll for debugger     从日志输出文件可以看出,在文件复制过程中,WinCE6.0编译器将oal.exe更名为nk.exe,而将kern.dll文件更名为 kernel.dll,也就是说,kern.dll文件的实现部分就是kernel.dll的实现体。根据前面的分析,oal.exe是与硬件相关独立于内核的OAL层的实现部分,而kernel.dll为内核相关独立于硬件的OAL层的实现部分。同样可以从最后整合后的二进制配置文件ce.bib文件中看出端倪。 ; @CESYSGEN IF CE_MODULES_NK nk.exe E:\WINCE600\OSDesigns\xsbase270\xsbase270\RelDir\XSBase270_ARMV4I_Release\oal.exe NK SHZ kitl.dll E:\WINCE600\OSDesigns\xsbase270\xsbase270\RelDir\XSBase270_ARMV4I_Release\kitl.dll NK SHZ kernel.dll E:\WINCE600\OSDesigns\xsbase270\xsbase270\RelDir\XSBase270_ARMV4I_Release\kern.dll NK SHZ ; @CESYSGEN ENDIF     而kern.dll动态库在整个Windows CE6.0中没有显式编译过程,即没有一个sources文件有kern.dll的编译过程,所以只能从操作系统的编译文件Makefile中寻找其编译过程。下面看一下$(_PUBLICROOT)\common\CESYSGEN\makefile中的部分内容: nk::$(NK_COMPONENTS) $(NK_REPLACE_COMPONENTS) @copy $(SG_INPUT_LIB)\oemstub.pdb $(SG_OUTPUT_OAKLIB) @copy $(SG_INPUT_LIB)\oemstub.lib $(SG_OUTPUT_OAKLIB) set TARGETTYPE=DYNLINK set TARGETNAME=kern set RELEASETYPE=OAK set DLLENTRY=NKStartup set DEFFILE=NO_DEF_FILE set TARGETLIBS= set SOURCELIBS=%%NKLIBS%% $(SG_INPUT_LIB)\nkmain.lib $(SG_INPUT_LIB)\fulllibc.lib $(MAKECMD) /NOLOGO NOLIBC=1 kern.dll     从上述代码中可以发现,原来kern.dll动态库是从oemstub.lib编译而来,而且与nkmain.lib有关。     在理顺了上述文件的相互之间的关系之后,再来分析Windows CE 6.0的启动过程可能就比较容易啦。     在理清了上述文件的关系之后,便可以分析任意一款基于ARM微处理器的Windows CE 6.0的启动过程,现在以深圳亿道电子技术有限公司开发的基于PXA270 ARM开发平台为例,分析Windows CE 6.0操作系统启动过程。 1、Startup函数:     从Windows CE 6.0的帮助文档可以看出,WinCE6.0的启动只与oal.exe和kernel.dll有关,至于kitl.dll,只有将操作系统编译成具有 KITL功能时才用到。分析Windows CE 6.0的启动过程实际上找到编译oal.exe和kernel.dll的源码位置。 oal.exe 的通过Startup函数完成硬件的初始化。Startup.s代码与该硬件平台的Bootloader启动代码共用,其中PreInit 函数主要完成将ARM处理器工作模式切换到管理员模式、同时关闭MMU,并检测系统启动原因,如果是热启动、即在该函数调用之前已经启动了 Bootloader程序,相当基本硬件初始化已经完成,则直接跳转到OALStartUp函数中;否则需要进行硬件中断屏蔽、内存、系统时钟频率、电源管理等硬件的基本初始化过程。(具体过程见代码的分析) $(_PLATFORMROOT)\xsbase270\src\common\Startup\Startup.s LEAF_ENTRY StartUp     bl PreInit     tst r10, #RCSR_HARD_RESET     beq OALStartUp     tst r10, #RCSR_GPIO_RESET     bne Continue_StartUp     bl xlli_mem_init ;初始化内存控制器     ldr r0, =xlli_PMRCREGS_PHYSICAL_BASE;     ldr r0, [r0, #xlli_PSPR_offset];     mov r1, r10;     bl XllpPmValidateResumeFromSleep;     cmp r0, #0;     bne Failed_Sleep_Resume;     Sleep_Reset     ldr r0, =xlli_PMRCREGS_PHYSICAL_BASE;     ldr r0, [r0, #xlli_PSPR_offset];     mov r1, r10;     b XllpPmGoToContextRestoration;     Failed_Sleep_Resume     ldr r1, =xlli_RCSR_SMR     bic r10, r10, r1     Continue_StartUp     bl xlli_intr_init; ;初始化中断控制器     bl EnableClks; ;使能内核时钟(内存/OS定时器/FFART时钟之需)     bl OALXScaleSetFrequencies ;设置系统频率     bl xlli_mem_Topt     bl xlli_mem_restart ;复位内存,使其处于工作模式     bl xlli_ost_init ;初始化操作系统定时器     bl xlli_pwrmgr_init ;初始化电源管理     bl xlli_IMpwr_init ;初始化内部存储器     b ENTRY_END 2、OALStartUp函数:     在系统硬件初始化完毕之后,Startup调用OALStartUp函数,OALStartUp函数主要完成将OEMAddressTable表传递给内核;然后调用KernelStart函数跳转到内核OEMAddressTable表的主要作用表的每一个入口都定义了一个内存中的物理位置、内存的大小以及映射这物理地址的静态虚拟地址; ◆静态虚拟内存地址被定义在缓冲存储器的范围之内; ◆内核可以创建非缓冲的内存地址指向到相同的物理地址; ◆对于同一物理地址,既有一个缓冲的虚拟内存地址,也有一个非缓冲的虚拟内存地址; ◆OEMAddressTable最后必须以0结尾; ◆对于MIPS和SHx类型的CPU,物理地址与虚拟地址的映射由CPU完成,无需创建OEMAddressTable $(_PLATFORMROOT)\xsbase270\src\Inc\ Oemaddrtab_cfg.inc): ALIGN g_oalAddressTable     DCD 0x80000000, 0xA0000000,64; XSBASE270: SDRAM (64MB).     DCD 0x84000000, 0x5C000000,1; BULVERDE: Internal SRAM (64KB bank 0).     DCD 0x84100000, 0x58000000,1; BULVERDE: Internal memory PM registers.     DCD 0x84200000, 0x4C000000,1; BULVERDE: USB host controller.     DCD 0x84300000, 0x48000000,1; BULVERDE: Memory controller.     DCD 0x84400000, 0x44000000,1; BULVERDE: LCD controller.     DCD 0x84500000, 0x40000000,32; BULVERDE: Memory-mapped registers     DCD 0x86500000, 0x00000000,64; XSBASE270: nCS0: Boot Flash (64MB).     DCD 0x96600000, 0x3C000000,64; BULVERDE: PCMCIA S1 common memory space.     DCD 0x8A600000, 0x38000000,32; BULVERDE: PCMCIA S1 attribute memory space.     DCD 0x8C600000, 0x30000000,32; BULVERDE: PCMCIA S1 I/O space.     DCD 0x8E500000, 0x2C000000,64; BULVERDE: PCMCIA S0 common memory space.     DCD 0x92500000, 0x28000000,32; BULVERDE: PCMCIA S0 attribute memory space.     DCD 0x94500000, 0x20000000,32; BULVERDE: PCMCIA S0 I/O space.     DCD 0x96500000, 0xE0000000,1; XSBASE270: Zero-bank .     DCD 0x96600000, 0x14000000,1; XSBASE270: nCS5: eXpansion board header.     DCD 0x96600000, 0x10000000,64; XSBASE270: nCS4: USB2.0/IDE controller.     DCD 0x9A700000, 0x0C000000,1; XSBASE270: nCS3: SMSC 91C111 Ethernet controller.     DCD 0x9A800000, 0x0A000000,1; XSBASE270: nCS2 : Board registers (CPLD).     DCD 0x9A900000, 0x04000000,32; XSBASE270: nCS1: Secondary flash (32MB).     DCD 0x9F900000, 0x50000000,1; BULVERDE: Camera peripheral interface.     DCD 0x9FA00000, 0x14700000,1     DCD 0x00000000, 0x00000000,0;end of table END $(_PLATFORMROOT)\xsbase270\src\oal\OalLib\Startup.s ALIGN LEAF_ENTRY OALStartUp     add r0, pc, #g_oalAddressTable - (. + 8)     mov r11, r0     b KernelStart     nop     nop     nop     nop     nop     nop     STALL     b STALL ;Spin forever. 3、KernelStart函数主要作用: ◆完成OEMAddressTable表中的物理地址到虚拟地址和虚拟地址到物理地址之间的映射; ◆对存储器页表和内核参数区存储空间(RAM或DRAM)进行清零处理。 ◆读出CPU的ID号,内核需要根据该ID决定ARM的MMU处理,因为ARMV6和ARMV6之前的ARM处理器的MMU处理过程有所区别; ◆设置并开启MMU和Cache,因为在Startup函数关闭MMU和Cache; ◆ 设置ARM处理器工作模式的SP指针,ARM处理器共用7种不同的工作模式(USER、FIQ、IRQ、Supervisor、Abort、 Undefined、System),除用户模式(USER)和系统模式(System)之外,其他5种工作模式都有具有特定的SP指针寄存器(ARM处理器称其为影子寄存器); ◆读取内核启动所需要的KDataStruct结构体; ◆调用ARMInit函数重新定位Windows CE内核参数pTOC和初始化OEMInitGlobals全局变量; ◆利用mov pc, r12指令跳转到kernel.dll的入口位置,即NKStartup函数中。 $(_PRIVATEROOT)WINCEOS\COREOS\NK\LDR\ARM\armstart.s LEAF_ENTRY KernelStart     mov r11, r0 ;(r11) = &OEMAddressTable (save pointer)     mov r1, r11 ;(r1) = &OEMAddressTable (2nd argument to VaFromPa)     bl VaFromPa     mov r6, r0 ;(r6) = VA of OEMAddressTable     ; convert base of PTs to Physical address     ldr r4, =PTs ;(r4) = virtual address of FirstPT     mov r0, r4 ;(r0) = virtual address of FirstPT     mov r1, r11 ;(r1) = &OEMAddressTable (2nd argument to PaFromVa)     bl VaFromPa     mov r10, r0 ;(r10) = ptr to FirstPT (physical)     ; Zero out page tables & kernel data page     mov r0, #0 ;(r0-r3) = 0''''s to store     mov r1, #0     mov r2, #0     mov r3, #0     mov r4, r10 ; (r4) = first address to clear     add r5, r10, #KDEnd-PTs ; (r5) = last address + 1 18 stmia r4!, {r0-r3}     stmia r4!, {r0-r3}     cmp r4, r5     blo %B18     ; read the architecture information     bl GetCpuId     mov r5, r0 LSR #16 ; r5 >>= 16     and r5, r5, #0x0000000f ; r5 &= 0x0000000f == architecture id     add r4, r10, #HighPT-PTs ; (r4) = ptr to high page table     cmp r5, #ARMv6 ; v6 or later?     ; ARMV6_MMU     orrge r0, r10, #PTL2_KRW + PTL2_SMALL_PAGE + ARMV6_MMU_PTL2_SMALL_XN     ; (r0) = PTE for 4K, kr/w u-/- page, uncached unbuffered,     nonexecutable     ; PRE ARMV6_MMU;     orrlt r0, r10, #PTL2_KRW + (PTL2_KRW << 2) + (PTL2_KRW << 4) + (PTL2_KRW << 6)     ;Need to replicate AP bits into all 4 fields     orrlt r0, r0, #PTL2_SMALL_PAGE + PREARMV6_MMU_PTL2_SMALL_XN     ;(r0) = PTE for 4K, kr/w u-/- page, uncached unbuffered,     nonexecutable     str r0,[r4, #0xD0*4] ;store the entry into 4 slots to map 16K of primary page table     add r0,r0, #0x1000 ;step on the physical address     str r0,[r4, #0xD1*4]     add r0,r0, #0x1000 ;step on the physical address     str r0,[r4, #0xD2*4]     add r0,r0, #0x1000 ;step on the physical address     str r0,[r4, #0xD3*4]     add r8,r10, #ExceptionVectors-PTs ;(r8) = ptr to vector page     orr r0,r8, #PTL2_SMALL_PAGE ;construct the PTE (C=B=0)     cmp r5,#ARMv6 ;v6 or later?     ; ARMV6_MMU     orrge r0, r0, #PTL2_KRW     ; PRE ARMV6_MMU     orrlt r0, r0, #PTL2_KRW + (PTL2_KRW << 2) + (PTL2_KRW << 4) + (PTL2_KRW << 6)     ; Need to replicate AP bits into all 4 fields for pre-V6 MMU     str r0,[r4, #0xF0*4] ;store entry for exception stacks and vectors     ;other 3 entries now unused     add r9,r10,#KPage-PTs ;(r9) = ptr to kdata page     orr r0,r9,#PTL2_SMALL_PAGE ;(r0)=PTE for 4K (C=B=0)     ; ARMV6_MMU (condition codes still set)     orrge r0, r0, #PTL2_KRW_URO ; No subpage access control, so we must set this all to kr/w+ur/o     ; PRE ARMV6_MMU     orrlt r0, r0, #(PTL2_KRW << 0) + (PTL2_KRW << 2) + (PTL2_KRW_URO << 4)     ;(r0) = set perms kr/w kr/w kr/w+ur/o r/o     str r0, [r4, #0xFC*4] ;store entry for kernel data page     orr r0,r4, #PTL1_2Y_TABLE ;(r0) = 1st level PTE for high memory section     add r1, r10, #0x4000     str r0, [r1, #-4] ; store PTE in last slot of 1st level table     add r10, r10, #0x2000 ; (r10) = ptr to 1st PTE for "unmapped space"     mov r0, #PTL1_SECTION     orr r0, r0, #PTL1_KRW ;(r0)=PTE for 0: 1MB (C=B=0, kernel r/w) 20 mov r1, r11 ;(r1) = ptr to OEMAddressTable array (physical) 25 ldr r2,[r1],#4 ;(r2) = virtual address to map Bank at     ldr r3,[r1],#4 ;(r3) = physical address to map from     ldr r4,[r1],#4 ;(r4) = num MB to map     cmp r4,#0 ;End of table?     beq %F29     ldr r12, =0x1FF00000     and r2, r2, r12 ;VA needs 512MB, 1MB aligned.     ldr r12, =0xFFF00000     and r3, r3, r12 ;PA needs 4GB, 1MB aligned.     add r2, r10, r2, LSR #18     add r0, r0, r3 ;(r0) = PTE for next physical page 28 str r0, [r2],#4     add r0, r0, #0x00100000 ;(r0) = PTE for next physical page     sub r4, r4, #1 ;Decrement number of MB left     cmp r4, #0     bne %B28 ;Map next MB     bic r0, r0,#0xF0000000 ;Clear Section Base Address Field     bic r0, r0, #0x0FF00000 ;Clear Section Base Address Field     b %B25 ;Get next element 29     sub r10, r10, #0x2000 ;(r10) = restore address of 1st level page table     ldr r12, =0xFFF00000 ;(r12) = mask for section bits     and r1, pc, r12 ;physical address of where we are     ;NOTE: we assume that the KernelStart function never spam     across 1M boundary.     orr r0, r1, #PTL1_SECTION     orr r0, r0, #PTL1_KRW ;(r0) = PTE for 1M for current physical address, C=B=0, kernel r/w     add r7, r10, r1, LSR #18 ;(r7) = 1st level PT entry for the identity map     ldr r8, [r7] ;(r8) = saved content of the 1st-level PT     str r0, [r7] ;create the identity map     mov r1, #1     mtc15 r1, c3 ;Setup access to domain 0 and clear other     mtc15 r10, c2 ;setup translation base (physical of 1st level PT)     mov r0, #0     mcr p15, 0, r0, c8, c7, 0 ;Flush the I&D TLBs     mfc15 r1, c1     orr r1, r1, #0x007F ;changed to read-mod-write for ARM920 Enable: MMU, Align, DCache, WriteBuffer     cmp r5, #ARMv6 ;r5 still set     ; ARMV6_MMU     orrge r1, r1, #0x3000 ;vector adjust, ICache     orrge r1, r1, #1<<23 ;V6-format page tables     orrge r1, r1, #ARMV6_U_BIT ;V6-set U bit, let A bit control unalignment support     ; PRE ARMV6_MMU     orrlt r1, r1, #0x3200 ;vector adjust, ICache, ROM protection     ldr r0, VirtualStart     cmp r0, #0 ;make sure no stall on "mov pc,r0" below     mtc15 r1, c1 ;enable the MMU & Caches     mov pc, r0 ;& jump to new virtual address     nop     VStart ldr r2, =FirstPT ;(r2) = VA of 1st level PT     sub r7, r7, r10 ;(r7) = offset into 1st-level PT     str r8, [r2, r7] ;restore the temporary identity map     mcr p15, 0, r0, c8, c7, 0 ;Flush the I&D TLBs     ; setup stack for each modes: current mode = supervisor mode     ldr sp, =KStack     add r4, sp, #KData-KStack ;(r4) = ptr to KDataStruct     ; setup ABORT stack     mov r1, #ABORT_MODE:OR:0xC0     msr cpsr_c, r1 ;switch to Abort Mode w/IRQs disabled     add sp, r4, #AbortStack-KData     ; setup IRQ stack     mov r2, #IRQ_MODE:OR:0xC0     msr cpsr_c, r2 ;switch to IRQ Mode w/IRQs disabled     add sp, r4, #IntStack-KData     ; setup FIQ stack     mov r3, #FIQ_MODE:OR:0xC0     msr cpsr_c, r3 ;switch to FIQ Mode w/IRQs disabled     add sp, r4, #FIQStack-KData     ; setup UNDEF stack     mov r3, #UNDEF_MODE:OR:0xC0     msr cpsr_c, r3 ;switch to Undefined Mode w/IRQs disabled     mov sp, r4 ;(sp_undef) = &KData     ; switch back to Supervisor mode     mov r0, #SVC_MODE:OR:0xC0     msr cpsr_c, r0 ;switch to Supervisor Mode w/IRQs disabled     ldr sp, =KStack     ; continue initialization in C     add r0, sp, #KData-KStack ;(r0) = ptr to KDataStruct     str r6, [r0, #pAddrMap] ;store VA of OEMAddressTable in KData     bl ARMInit ;call C function to perform the rest of initializations     ; upon return, (r0) = entry point of kernel.dll     mov r12, r0     ldr r0, =KData     mov pc, r12 ;jump to entry of kernel.dll     VirtualStart DCD VStart ENTRY_END KernelStart 4、ARMInit函数:     在ARMInit之前,系统仍无法使用全局变量,因为系统的全局还在ROM区域,对于操作系统而言,出于安全考虑,只有XIP程序才有读取ROM区域数据的权利,对于大部分Windows CE 操作系统,只有将数据拷贝到RAM区域后才能进行读写,ARMInit函数中通过调用KernelRelocate函数对pTOC全局变量重新定位,定位之后,对内核启动所需要的KDataStruct结构体进行初始化,其中OEMInitGlobals便是交换oal.exe和kernel.dll之间的全局指针,ARMInit函数返回kernel.dll的入口位置。并在KernelStart函数最后利用mov pc, r12指令跳转到kernel.dll的入口位置,即NKStartup函数中。 $(_PRIVATEROOT)WINCEOS\COREOS\NK\LDR\ARM\arminit.c LPVOID ARMInit (struct KDataStruct *pKData) { /* Initialize kernel globals */     KernelRelocate (pTOC); /* The only argument passed to the entry point of kernel.dll is the address */ /* of KData, we need to put everything we need to pass to in in KData. */     pKData->dwTOCAddr = (DWORD) pTOC;     pKData->dwOEMInitGlobalsAddr = (DWORD) OEMInitGlobals;     SetOsAxsDataBlockPointer(pKData);     return FindKernelEntry (pTOC); } 5、NKStartup函数:     硬件平台初始化完成后,oal.exe的启动任务基本完成,余下的启动工作由内核相关且独立于内核的OAL层实现体kernel.dll接管。kernel.dll主要作用: ◆从结构体参数KDataStruct * pKData提取内核启动时所必须的全局变量,同时初始化内核全局变量; ◆ 定位对Windows CE 6.0特有的OEMGLOBAL结构体的初始化函数OEMInitGlobals地址,该结构体构建了内核和OAL层之间进行通信的桥梁。在 OEMGL
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服