资源描述
【技术讲座】热设计基础(二)风扇只需根据能量收支决定
与PS3同等大小的箱体所产生的自然散热,最多也只有30W左右,这在确认热相关基础知识的第一篇文章中已经介绍过。有时必须利用某些手段强制性地排出剩余热能。此时,电子产品中使用的是专门用来在产品内外进行换气的风扇。该风扇根据能量的收支计算来决定。下面将介绍如何选择风扇。
在讲解热传递基础知识的本连载第一篇文章中得知,与第一代“PlayStation 3”(PS3)大小(325mm×275mm×100mm)基本相同的方形箱体表面,“最多只能散热30W左右”。而事实上,有许多人无法认同这种解释。他们的观点大致有以下三种。
“好像有辐射特性非常出色的涂料?”
“外壳全部采用铝!”
“如果采用水冷方式的话,可以进一步减小尺寸?”
在进入正题之前,我们先就这些观点进行探讨。
首先是“魔术涂料”。实际上,的确有一种可以提高表面辐射率的涂料。那么,我们将在上次计算中为0.8的辐射率,改为理论最高值1.0进行计算。虽然因辐射而产生的散热量增至1.25倍,但整体上约为38W,只不过比上次的33W增加了5W。在“发热量较少,而换气的确困难”的状况下,“魔术涂料”可成为强有力的帮手,但也并不是将散热量增至两倍或三倍。
“外壳全部采用铝!多花成本也无所谓!”这样的话对于我这样的机械爱好者真是求之不得……然而,这种想法的出发点应该是“均匀外壳表面的温度,从整个表面进行散热”吧。
这种情况下的答案显而易见。上章中,考虑到外壳表面的温度分布,粗略地估算为有“六成”分布达到60℃,散热量估计为33W。假设外壳表面完全没有温度分布,整个表面均为60℃,那么不打“六折”,散热量约为55W。
那么,反过来算一下,要想通过外壳表面散热300W,表面温度必须为多少℃。而且,辐射率为理论上的最高值1.0,同时没有温度分布!在这种条件下进行计算,得到的结果竟然是115℃。这种温度岂止是摸上去会不会导致烧伤的问题!这种游戏机太不安全了,无法销售。
“如果采用水冷方式的话,将可以很好地降温”。许多人都有这种简单的想法。确实,自来水是比较凉。如果从自来水的水龙头开始拉长水管连接到产品上的话,肯定可以很好地降温。但是,不能这么做吧。
冷却机构基本上由三个要素构成。
①受热部:承受发热源的热量
②传热部:将热量从受热部传递到散热部
③散热部:将热量传递到大气中
水冷是指经由水进行②热传递。其原理是暂且将发热源的热量传递到水中,然后水(应该是热水)流动到散热部,最后排放到大气中。
水冷后的水只在装置中循环,最终必须通过某些方法将热量排放到大气中。原则上,①和③的大小即使采用水冷方式也不会发生变化。另外,如果采用水冷方式,就需要泵和配管,这样一来冷却机构的体积就会变大。
水冷可以在下列几种情况中发挥作用。汽车的发动机(发热源)和散热器(散热部)就是代表性例子。
?由于发热部的热密度较大,因此希望提高受热部的热导率
?发热部和散热部远远地隔开
?由于总发热量较多、散热部非常大,因此希望将热量扩散到散热部的各个角落
?发热源较多,希望通过一个散热部统一进行散热
至此,各位读者心中已经有一个大致的答案了吧。即使运用各种方法,也无法从PS3这种大小的产品表面自然地放出200W或300W的热量。剩余部分只能吸入空气,然后使热量渗入到空气中,最后将变暖的空气排放到产品外部。例如,如果整个装置的发热量为100W,则剩余的70W必须通过“换气”排出去。
那么,当流入空气温度为40℃、流出空气温度为60℃时,为了排出70W热量需要多少空气量呢?根据空气热容量按照下面的公式进行计算后得知,需要毎秒2.7L(毎分0.162m3)的空气。即便只是想象一下,也是个很大的量啊。
该风量无法通过自然换气排出来,稍后将会详细地进行介绍。最终结论是需要风扇。另外,第一代PS3的热处理能力为500W,因此,为了通过换气将减去30W后剩余的470W排出去,需要每分钟1.1m3的换气量。
不过,在实际的产品开发中,很难按照理论值进行。会使用稍多的流量。换言之,“能够以尽量接近理论值的较少的空起量进行冷却”将决定冷却设计的优劣。如何减少未发挥作用而白白通过的空气,将成为显示技术实力的关键。
此处将介绍在本连载中今后会用到的便捷工具。这就是称为“P-Q图”或“P-Q特性”的图表,纵轴表示静压(P)、横轴表示流量(Q)。
①装置的阻力特性
请想象一下有吸气口和排气口的装置。空气从吸气口进入后,会在装置内流动,然后从排气口出来。此时,装置中塞满了部件,因此会阻碍空气流动。如果在吸气口施加低静压,会有少量空气流动起来,如果施加高静压则会有大量的空气流动起来。这是当然的。
如果将这种关系用图表来表示,会形成一条向右上方攀升的线。①表示装置的通风阻力,即“向该装置中施加多少静压后,会有多少空气会流动起来”。一般称为“系统阻抗” (System Impedance)。
②风扇的性能特性
当被问及“该风扇的性能如何”时,如果可以用“10马力”等一个数值来表达就好了,但却不能这么做。这是因为,即便是同一个风扇,如果安装在阻力较大的箱体上,就只能使少量空气流动起来,如果安装在阻力较小的箱体上,则可以使更多的空气流动起来。
将这种关系用图表来表示的话,会形成一条向右下方下降的线。②就是表示风扇能力的曲线。表示“风扇在多大的静压时,会使多少空气流动起来”。一般称为扇在多大的静压时,会使多少空气流动起来”。一般称为“风扇的P-Q特性”。
③工作点
那么,在①装置中安装②风扇时,会产生多大的静压、流动多大的流量?表示该答案的就是①和②的交点——工作点。
在对强制进行空气冷却的产品进行设计,最先决定的是风扇的种类和大小。风扇的种类和大小先于散热片(散热板)和微细内部构造进行决定,这也许会让部分读者觉得意外。更准确的说,是已经被决定了。
风扇有多种型号,P-Q特性线的斜率会因种类而发生变化。这里将介绍三种具有代表性的风扇。
(点击放大)
①轴流风扇:这是一种最普通的像电风扇扇翼一样的风扇。风从扇翼的旋转轴方向排出。特点是静压低、风量大。“PlayStation 2”(PS2)中采用了这种型号的风扇。
②离心式风扇:这是一种利用离心力引起空气流动的风扇。风从圆周方向排出。特点是静压稍高、风量稍少。PS3中采用的风扇就是这种型号。
③横流风扇(Cross flow Fan):从旋转圆筒的一侧曲面大量吸入空气,然后从另一曲面大量排出。特点是风量超大、静压超低。适合换气量非常大、系统阻抗较低的产品。代表性例子就是空调的室内机。
另外,即便是相同种类的风扇,如果大小和旋转次数不同,风量和静压也会发生变化。如果都变大的话,P-Q特性线就会偏向右上方。
(点击放大)
下面将把各种风扇的特性绘制到P-Q图中。将各种风扇P-Q特性线的大致中间值作为代表值,两轴采用对数显示方式。
按照横流风扇、轴流风扇和离心式风扇的顺序,静压越来越高。作为参考,还加入了机械式压缩机的数值。正如读者想像的那样,压力非常大,但流量非常少。
将正在设计的产品所需风量和所需静压代入该图中,就可以判断出哪种型号的风扇是最佳选择。
那么,笔者将以第一代PS2及第一代PS3为例来介绍风扇的选择方法。
首先,估计所需的换气量。第一代PS2为了向空气中排出80W,所需的换气量为毎分钟0.24m3。第一代PS3为了承受470W的热量,需要毎分钟1.1m3的换气量。
然后,估计系统阻抗。虽然只是“估计”,但实际上并不能通过纸上计算轻松地得出结果。对类似的机型进行测量,或者试制样机进行实验,这样更快吧。
从结论来看,第一代PS2约为15Pa,第一代PS3约为300Pa。两者之间的差距起因于空气的流动路径。PS2采用的是从外壳前面吸气,然后冷却散热片和电源,最后直接从外壳背面进行排气的笔直流路。而PS3则是从多处吸气,对多处进行冷却,然后冷却电源,在外壳内转换方向从二层降到一层,对散热片进行冷却后排气。由于流路长而复杂,因此空气阻力较大。这时就需要可以解决这个问题的高静压风扇。
将需要的换气量和静压代入P-Q图中。PS2的要求标准是轴流风扇的“好球区” (Strike Zone)。而离心式风扇恰好符合PS3的要求标准。
然后,查看风扇厂商的产品目录,从符合P-Q特性的风扇中选择大小刚好的产品。PS2和PS3风扇的扇翼形状是索尼自主开发的,参考各大公司的产品目录后,大致上就可以想象到其大小。顺便介绍一下,在第一代PS3中,为了获得每分钟1.1m3和300Pa的性能,新开发出了直径为140mm、厚度为30mm的风扇。并且,PS2和“PSX”中采用了直径为60mm、厚度为15mm的轴流风扇。
至此,本文一直强调,“如果不用风扇,这些风量不会流动起来”。果真如此吗?肯定会有人持有这样的疑问,“如果最大限度地利用‘烟囱效应’ (Chimney Effect),不是可以散热几十W左右吗”?
如果温度变高,空气就会膨胀。也就是说,如果体积相同,热空气会变轻。较轻的空气被较重的空气推开,然后上升。这就是自然对流。
如果用墙壁将又热又轻的空气包围起来,敞开上下面,可进一步地促进自然对流。这就是烟囱效应。
那么,如果假设整个产品外壳是烟囱,则可获得多大的流量呢?假设是一个大小与PS3基本相同的方形箱体,将其上面和下面全都敞开。然后求出此时因烟囱效应而产生的静压。
40℃的空气密度为1.128kg/m3,60℃的空气密度为1.060kg/m3。空气密度之差乘以外壳高度后,得知静压为0.022kg/m2(=0.216Pa)。
我们根据该静压来推算风量。因为有第一代PS2的系统阻抗测定值,因此可以使用。
当施加通过烟囱效应获得的0.216Pa静压时,流入第一代PS2的风量仅为毎分钟0.015m3。第一代PS2需要的风量,即便是理论值也高达每分钟0.24m3。毎分钟0.015m3这个数值完全不够!即使将整个产品外壳做成烟囱,也无望通过烟囱效应进行换气。结论还是必须得安装风扇。
如上所述,所需风扇型号和大小全由能量情况决定。首先应决定风扇,“采用何种内部构造”及“采用什么样的散热片”等是次要的。
姑且进行试制或姑且实现模块化进行模拟,如果未能冷却再安装风扇,这种开发方式无法制成出色的产品,而且会耗费开发时间。首先动手计算,搞清楚能量收支与风扇的必要性,才是合理的设计捷径。(特约撰稿人:凤 康宏 索尼计算机娱乐公司设计2部5课课长)
展开阅读全文