资源描述
天然气制氢装置工艺技术规程
1.1装置概况规模及任务
本制氢装置由脱硫造气工序、变换工序、PSA制氢工序组成
1.2工艺路线及产品规格
该制氢装置已天然气为原料,采用干法脱硫、3.8MPa压力下的蒸汽转化,一氧化碳中温变换, PSA工艺制得产品氢气。
1.3消耗定额(1000Nm3氢气作为单位产品)
序号
名称
单位
小时消耗量
单位消耗
备注
1
天然气
Nm3
38976
453
2
原料天然气
Nm3
35840
417
3
燃料天然气
Nm3
3136
36.5
4
电
KWh
3584.02
41.67
5
脱盐水
吨
119.4
1.39
2.1工艺过程原料及工艺流程
2.1.1工艺原理
1.天然气脱硫
本装置采用干法脱硫来处理该原料气中的硫份。为了脱除有机硫,采用铁锰系转化吸收型脱硫催化剂,并在原料气中加入约1-5%的氢,在约400℃高温下发生下述反应:
RSH+H2=H2S+RH
H2S+MnO=MnS+H2O
经铁锰系脱硫剂初步转化吸收后,剩余的硫化氢,再在采用的氧化锌催化剂作用下发生下述脱硫反应而被吸收:
H2S+ZnO=ZnO+H2O
C2H5SH+ZnS+C2H5+H2O
氧化锌吸硫速度极快,因而脱硫沿气体流动方向逐层进行,最终硫被脱除至0.1ppm以下,以满足蒸汽转化催化剂对硫的要求。
2.蒸汽转化和变换原理
原料天然气和蒸汽在转化炉管中的高温催化剂上发生烃—蒸汽转化反应,主要反应如下:
CH4+H2O= CO+3H2-Q (1)
一氧化碳产氢 CO+H2O=CO2+H2+Q (2)
前一反应需大量吸热,高温有利于反应进行;后一反应是微放热反应,高温不利于反应进行。因此在转化炉中反应是不完全的。
在发生上述反应的同时还伴有一系列复杂的付反应。包括烃类的热裂解,催化裂解,水合,蒸汽裂解,脱氢,加氢,积碳,氧化等。
在转化反应中,要使转换率高,残余甲烷少,氢纯度高,反应温度要高,但要考虑设备承受能力和能耗,所以炉温不宜太高。为缓和积碳,增加收率,要控制较大的水碳比。
3.变化反应的反应方程式如下:
CO+H2O=CO2+H2+Q
这是一个可逆的放热反应,降低温度和增加过量的水蒸气,均有利于变换反应向右侧进行,变换反应如果不借助于催化剂,其速度是非常慢的,催化剂能大大加速其反应速度。使最终CO浓度降到低的程度,且为生产过程中的废热利用创造了良好的条件
4.变压吸附原理
变压吸附简称PSA,是对气体混合物进行提纯的工艺过程。该工艺是以多孔性固体物质(吸附剂)内部表面对气体分子的物理吸附为基础,在两种压力状态直接工作的可逆的物理吸附过程。它是根据混合气体中杂质组分在高压下具有较大的吸附能力,在低压下又有较小的吸附能力,而理想组分H2无论在高压下还是在低压下都具有较小的吸附能力的原理。在高压下,增加杂质分压以便将其尽量多的吸附于吸附剂上,从而达到高的产品纯度;吸附剂的解析或再生在低压下进行,尽量减少吸附剂上杂质的残余量,以便在下个循环再次吸附杂质
2.1.2流程简图(附图)
2.1.3流程简述
1.脱硫流程和设备
天然气为原料,H2S只有几十ppm和少量的有机硫(20-30ppm),因此采用流程为:在一个钴钼加氢器后串两个氧化锌脱硫槽。加热主要是(原料天然气达到脱硫反应温度350-400℃)。设在一段炉对流段低温蒸汽过热蒸汽过热器之后的一个原料预热盘管组,利用烟气余热进行加热的。
来自界区的天然气经进入原料气分离器(F1101)分离掉其中的液体,分为两股,一股作为燃料气与来自PSA制氢工序的尾气在燃料气分离器(F1102)混合后去对流段余热;一股作为原料天然气,配入来自中温变换后的氢气,进入原料气压缩机J1101,压缩到22Kg/cm2左右,进入一段转化炉对流段余热盘管,预热到427℃,并用未预热的副线调节到350-400℃,再送入加氢转化器D 1101
原料天然气在加氢转化器内反应后,串联通过两个氧化锌脱硫槽D1103A、B中使天然气的硫含量降低至0.1ppm以下。这两个槽任何一个都可以作为第一个槽,也可以只使用一个槽,另一个更换脱硫剂,经过脱硫的气体送入一段炉。
2.转化流程
脱硫后的天然气配入中压蒸汽,达到一定的水碳比(3.5左右),进入一段炉对流段的混合气预热盘管,加热到500℃,送到一段炉辐射段顶的9根上集气管。每根上集气管又把气体分配到42根转化炉管中,共378根,内装催化剂。气体在管内边吸热边反应,到转换管底的温度达到820℃。每一排横竖42根炉管的气体汇合于一根水平的下集气管。下集气管也是9,各有一根上升管。反应后的气体沿9根上升管上升,继续吸收一些热量。
在一段炉对流段分别设置:
混合器预热器
烟气废锅
蒸汽过热器
原料气预热器
锅炉给水预热器
燃料气预热器
助燃空气预热器
充分回收烟气热量提高一段炉总的热效率。
一段炉出口的转化气温度约为813℃,甲烷含量约9.7%(干基),经输气管(107-D)进入二段转化炉(103-D),二段转化炉仅作为通道使用,在二段炉水夹套的作用下,一段转化气的温度降低到约789℃,在第一废热锅炉(101-CA/B)和第二废热锅炉(102-C)中回收热量后,温度降低至约371℃去变化工序。
3.变换原理
转化气进入高变炉(D1102),高变炉中装填了铁系的高温变换触媒,在高温变换触媒中发生变换反应,大部分一氧化碳与蒸汽反应生成二氧化碳和氢气,离开高温变换炉的工艺气中一氧化碳含量降低到约2.2%(干基)。为使变换反应更接近平衡,高温变换炉出口气依次经过高变换废热锅炉(103-C)和高变气锅炉给水预热器(0108-CM)回收热量后,在约220-230℃进入装有铜触媒的小低变(104-DB1)进一步发生变换反应,从小低变出来的变换气经过高变炉出气锅炉给水预热器(106-C)回收热量后,进入到低变炉(104-DB)进一步发生变换反应,低低变换炉出口的一氧化碳含量降低到0.24%(干基),送往脱碳工序。
4.PSA
变压吸附技术是以吸附剂(多孔固体物质)内部表面对气体分子的物理吸附为基础,利用吸附剂在相同压力下易吸附高沸点组份、不易吸附低沸点组份和高压下吸附量增加(吸附组份)低压下吸附量减小(解吸组份)的特性。将原料气在压力下通过吸附剂床层,相对于氢的高沸点杂质组份被选择性吸附,低沸点组份的氢不易吸附而通过吸附剂床层(作为产品输出),达到氢和杂质组份的分离。然后在减压下解吸被吸附的杂质组份使吸附剂获得再生,已利于下一次再次进行吸附分离杂质。这种压力下吸附杂质提纯氢气、减压下解吸杂质使吸附剂再生的循环便是变压吸附过程。
多层变压吸附的作用在于:保证在任何时刻都有相同数量的吸附床处于吸附状态,使产品能连续稳定地输出;保证适当的均压次数,使产品有较高的提取率。
在变压吸附过程中,吸附床内吸附剂解吸时依靠降低杂质分压实现的,本装置采用的方法是:常压解吸
降低吸附床压力(泄压)
逆放解吸
冲洗解吸
图2-1示意说明吸附床的吸附、解吸过程。
C’
Q4
逆向放压
C
D
Q3
顺向放压
E
Q2
吸
附
吸
留
量
B
Q1
冲
洗
A
升压
P3
P2
P1
P0
吸附压力
大
气
压
真
空
图2-1示意说明吸附床的吸附、解吸过程
升压过程(A-B):
经解吸再生后的吸附床处于过程的最低压力P1,床内杂质吸附量为Q1(A点)。在此条件下用产品组份升压到吸附压力P3,床内杂质吸附量Q1不变(B点)。
吸附过程(B-C):在恒定的吸附压力下原料气不断进入吸附床,同时输出产品组份。吸附床内杂质组份的吸附量逐步增加,当到达规定吸附量Q3(C点)时停止进入原料气,吸附终止。此时吸附床内仍预留有一部分未吸附杂质的吸附剂(如吸附剂全部吸附杂质,吸附量可为Q4,C’点)。
顺放过程(C-D):
沿着进入原料输出产品的方向降低压力,流出的气体仍为产品组份用于别的吸附床升压或冲洗。在此过程中,随床内压力不断下降,吸附剂上的杂质被不断解吸,解吸的杂质由继续被未充分吸附杂质的吸附剂吸附,因而杂质并未离开吸附床,床内杂质吸附量Q3不变。当吸附床降压至D点时,床内吸附剂全部被杂质占用,压力为P2。
逆放过程(D-E):
开始逆着进入原料气输出产品的方向降低压力,直到变压吸附过程的最低压力P1(通常接近大气压力),床内大部分吸附的杂质随气流排出塔外,床内杂质吸附量为Q2。
冲洗过程(B-A):根据实验测定的吸附等温线,在压力P1下吸附床仍有一部分杂质吸附量,为使这部分杂质尽可能解吸,要求床内压力进一步降低。在此利用顺放气冲洗床层不断降低杂质分压使杂质解吸。经一定程度冲洗后,床内杂质吸附量降低到过程的最低量Q1时,再生终止。至此,吸附床完成一次吸附-解吸过程,再次升压进行下一次循环。
经过冷却、分水后的中变气进入装有吸附剂的吸附器,吸附除去氢气以外的其它杂质(H2O\CO\CO2\CH4),使气体得以净化。
净化后的工业氢纯度大于99.9%(V/V),以恒定的流量和压力通过氢气压缩机(110-J)外送。供直接液化装置。
吸附剂再生得到的尾气,经脱附气缓冲罐F7003,稳定后经过PIC7007多余的部分由PIC7005放空进火炬后,进入螺杆压缩机0115-J/JT送转化做燃料
6工艺冷凝液回收
变换气分离罐中分离下来的工艺冷凝液经工艺冷凝液泵(109-J/JA)加压,与汽提后的工艺冷凝液在工艺汽提冷凝液换热器(130-CA/CB)中换热后进入工艺冷凝液汽提塔(103-E)的顶部。汽提蒸汽自工艺冷凝液汽提塔底部进入,将工艺冷凝液中溶解的微量氨、二氧化碳和醇汽提出来,用作工艺蒸汽。汽提后的工艺冷凝液经过汽提冷凝液锅炉给水换热器(131-C)进一步回收热量,并经工艺冷凝液水冷器(0105-CM)冷却后送出界区,开车或操作不正常时电导率超标的工艺冷凝液去污水处理。
7、脱盐水系统
温度40℃压力0.6MPa的脱盐水从界区来,经贫液锅炉给水换热器1107-C温度升至72℃,大约40%经汽提冷凝液锅炉给水换热器131-C换热至105℃,与剩余的脱盐水混合后经净化器水冷器换热至94℃进入除氧器101-UM,通过注联胺和热力除氧去除夹带的氧离子温度升至115℃,通过注氨水调节PH值后进入汽包给水泵0104-J/JA送入汽包。
8、蒸汽系统
锅炉水通过101-CA/CB,102-C及烟气废热锅炉生产高压蒸汽(温度313.8℃,压力10.3MPa),高压蒸汽经一段炉对流段蒸汽过热盘管,温度过热至420℃,再经脱氧水减温减压后温度降至350℃压力降至3.8MPa供工业蒸汽及各蒸汽透平用。部分中压蒸汽经再次减温减压,压力降至0.35MPa温度200℃用作除氧用蒸汽。在开工阶段,启用透平及表面冷凝器则需引用外来中压及低压蒸汽。
2.1.4装置辅助系统
2.1.4.1仪表风系统
界区来仪表空气经流量计FRQ5060进入仪表风罐0107-FM缓冲后送到装置各用户。当仪表风压力PAL5061压力低时PSLL报警后连锁停车。
2.1.4.2循环水系统
循环水自界区来,温度28度压力0.5MPa分别进入各冷却点
冷却设备
用量T/H
0102-J
269
0105-CM
225
0104-CM
34
1109-C,1110-C
2000
0116-CM
68
0106-CM
152
101-JCM
2240
0110-J/JA
134.2
0115-J
102
PSA装置
1.6
油系统及其它
150
返回温度升至38℃,压力降至0.3MPa
2.1.4.3火炬系统
原有放空燃气及放空气进入火炬罐0119FM稳压后进入火炬管烧掉。
2.1.4.4氮气系统
从界区来的氮气有两种,一种是5.2MPa的中压N2,用于高压系统的吹扫和气密。另一种是0.8MPa的低压氮气用于平时吹扫。
2.2装置控制指标
2.2.1原料质量指标
1.原料天然气
组成 体积%
CH4 96.30%
C2H6 0.787
C3H8 0.114
C4H10 0.033
C5H12 0.008
N2 0.559
He 0.024
CO2 2.17
总硫 2.89mg/m3
压力 正常值1.45MPa
2.2.2燃料指标
2.2.2.1燃料天然气
同原料天然气
2.2.2.2燃料尾气
出口温度
120
尾气流量
11300.65kg/h
组成
(MOL%)
H2
38.89
CO
1.37
CO2
0.48
CH4
49.96
H2O
9.42
N2
0.88
100.00
2.2.3产品质量指标
氢气组成如下
H2
≥99.6
CO+CO2
≤20.0PPm
N2+CH4
≤0.4
出口温度
40℃
出口压力
2.4MPa
产品流量
85885Nm3/h
2.2.3.1二段炉转化气指标
温度
789℃
压力
31.6bar
流量
209344.22Nm3/h
H2
69.85%
CO
9.84%
CO2
10.49%
CH4
9.66%
2.2.3.3高变气指标
温度
415.8℃
流量
209344.22Nm3/h
H2
71.94%
CO
2.19%
CO2
16.71%
CH4
8.99%
压力
29.7bar
2.2.3.4低变气指标
温度
223.6℃
流量
209344.22Nm3/h
H2
72.48%
CO
0.24%
CO2
18.31%
CH4
8.82%
压力
28.5bar
2.2.3.5脱碳气指标
温度
40℃
流量
108297.51Nm3/h
H2
88.66%
CO
0.29%
CO2
0.1%
CH4
10.81%
压力
25.8bar
2.2.3.6PSA产品气指标
项目
单位
指标
进装置的温度
℃
20-40
进装置的压力
MPa
2.55
氢纯度
%(V/V)
≥99.6
CH4
%(V/V)
≤0.002
CO
%(V/V)
≤0.001
CO2
%(V/V)
≤0.0001
2.2.3.7外输蒸汽指标
本装置生产10P3.9MPa T 350℃
2.2.4三剂及化学药品的物化性质及控制指标
2.2.4.1磷酸三钠
2.2.4.2氨
含量10-35% 密度0.91
2.2.4.3联胺
密度1.01 闪点38 爆炸极限2.9-98.0
2.2.4.4五氧化二钒
密度3.35 能助燃
2.2.4.5二乙醇胺
密度1.09 可燃 闪点137 爆炸极限1.6-9.8%
2.2.4.6碳酸钾
密度2.43
2.2.5主要工艺操作条件
项目
仪表位号
单位
控制范围
原料天然气压力
PIC5002
MPa
1.35-1.55
原料压缩机出口压力
PIC27
MPa
4.2
燃料混合罐压力
PIC5063
MPa
0.3
加氢反应器入口温度
TI1051
℃
350-380
加氢反应器床层温度
TI1138-1143
℃
≤400
脱硫反应器入口温度
TI1143
℃
330-380
脱硫反应器出口温度
TI0052 TI0055
℃
330-370
水碳比
H/C101
3.5-4.5
配比蒸汽温度
TI1002
℃
323
转化炉入口温度
TI1003
℃
490-510
转化炉出口温度
TRC1117
℃
750-820
中变反应器入口温度
TRC0010
℃
310-370
中变反应器出口温度
TI1197
℃
≤424
小低变入口温度
TI5030
℃
220-235
小低变床层温度
TI5031-5036
℃
≤250
低变入口温度
TRC1053
℃
205-220
低变床层温度
TI1012-1016 1108
℃
≤250
入1104-C低变气温度
℃
223.6
低变气入1105-C温度
TI1019
℃
165
低变气入CO2吸收塔温度
℃
121
出CO2吸收塔净化气温度
TI1054
℃
71
去PSA净化气温度
TI5050
℃
40
富液出CO2吸收塔温度
TI1136
℃
119
贫液出再生塔温度
TI1113
℃
121
半贫液出再生塔温度
TI4017
℃
119
半贫液出闪蒸槽温度
℃
110
出再生塔CO2气体温度
TI1023
℃
101
进再生塔顶酸性冷凝水温度
TI1137
℃
40
进CO2吸收塔顶贫液温度
℃
71
入CO2吸收塔底低变气压力
MPa
2.77
出CO2吸收塔顶净化气压力
MPa
2.6
出CO2再生塔CO2气压力
MPa
0.165
入CO2吸收塔顶贫液流量
FIC5
Kg/h
149900
入CO2吸收塔半贫液流量
FIC67
Kg/h
1119000
入CO2再生塔富液流量
Kg/h
1323986
CO2吸收塔出口CO2含量
V%
<0.1%
中压蒸汽温度
TRC5192
℃
350-400
中压蒸汽压力
PRC5191 5197 5202
MPa
3.5-4.0
PSA原料温度
TI7002
℃
20-40
PSA原料压力
PI7002
MPa
2.3-2.6
高压蒸汽压力
PRC5192
MPa
8.0-10.5
高压蒸汽温度
TI0085
℃
420
低压蒸汽压力
PRC5194
MPa
0.35
低压蒸汽温度
TIC5202 5191
℃
200
进CO2吸收塔中部半贫液温度
℃
110
2.2.6公用工程及界区条件
2.2.6.1
项目
温度(℃)
压力(MPa)
新鲜水
常温
>0.30
生活用水
常温
>0.30
循环冷水
<32
>0.45
循环热水
>42
>0.35
公用风
常温
>0.60
仪表风
常温
>0.60
氮气
常温
>1.6
1.0MPa蒸汽
>200
>0.80
消防水
常温
>1.0
脱盐水
>25
>1.0
0.5MPa蒸汽
>150
>0.40
管网燃料气
>40
>0.50
2.2.6.2氮气条件
纯度
99.99%
氧含量
<10ppm
露点
-70℃
2.2.6.3工艺用脱盐水
PH值
6.2-7.5
电导率(25℃)
≤0.2s/cm
硬度
0
含SiO2
≤0.02mg/l
铁
<0.02 mg/l
铜
<0.003mg/l
2.2.6.4仪表及工厂空气
仪表空气
压力MPa 温度℃
机械设计值 1.0 60
最大操作值 0.8 <40
正常操作值 0.7 <40
最小操作值 0.55 <40
露点温度 冬季:-40℃ 夏季:-20℃
含油 <10mg/m3(0.01ppm)
含尘 ≤1 mg/m3
工厂空气
压力MPa 温度℃
设计值 1.0 60
最大操作值 0.8 <40
正常操作值 0.6 <40
最小操作值 0.4 <40
2.2.7消耗指标
序号
名称
单位
小时消耗量
单位产品消耗量
备注
1
天然气
Nm3
38976
453
2
原料天然气
Nm3
35840
417
3
燃料天然气
Nm3
3136
36.5
4
电
KWh
3584.02
41.67
5
脱盐水
T
119.4
1.39
6
冷却水
T
5425.8
63.09
7
蒸汽(3.9MPa)
Kg
12000
139.5
8
工艺冷凝液
Kg
50892
591.7
备注:
1) 设计规模:按一段炉的最大能力进行设计
2.3装置物料平衡(见附表)
2.4生产控制分析项目
序号
分析项目
控制指标
分析频率
1
原料气:组成
1次/天
2
两套脱硫器反应器出口:硫含量
<0.00005%(V/V)
1次/天
3
转化气:组成
CH4<10.5%(V/V)
1次/班
4
中变气:组成
CO<3.3%(V/V)
1次/班
5
低变气:组成
CO <0.3%(V/V)
1次/班
6
净化气:组成
CO2<0.1%(V/V)
1次/班
7
产品气:组成
H2≥99.6%(V/V)
1次/班
8
溶液:组成
1次/天
9
脱氧水:含氧量
≤0.015mg/l
1次/天
10
高压炉水:PH、PO43-
9-11、<30mg/l
2次/班
11
酸性水:PH、COD
7-10、<0.03%
1次/天
12
饱和中压蒸汽:SiO2
≤20ug/Kg
1次/周
13
过热高压蒸汽:SiO2
≤20ug/Kg
1次/周
序号
项目
单位
预计数值
1
PH
Mg/L
7-9
2
COD
Mg/L
200-250
3
BOD
Mg/L
60-75
4
石油类
Mg/L
≤100
5
氨氮
Mg/L
≤60-75
6
硫化物
Mg/L
≤0.5
7
酚
Mg/L
≤0.5
8
氯离子
Mg/L
≤700
9
硫酸根离子
Mg/L
≤850
10
总硬度
Mg/L
≤750
11
总碱度
Mg/L
≤750
12
浊度
≤30
13
溶解性固体
Mg/L
≤3000
2.5仪表控制方案及主要仪表性能
2.5.1仪表控制方案
1.1转化系统
控制点
控制目的
控制方式
控制指标
PIC-4002(鼓风机压力控制)
提供转化炉辐射段在正常生产中炉内燃料燃烧所需氧量
控制器PIC-4002通过控制阀PV-4002控制鼓风机透平转速而达到控制鼓风机出口风压的目的,风压的高低直接体现在空气进料的多少,从而提供燃料燃烧所需氧量。
氧含量分析仪AIA-5010/AIA-5011分析值为3-5
PIC-4005(一段炉辐射段压力控制)
控制炉膛负压在合理范围
控制器PIC-4005通过控制阀PV4005控制引风机透平转速来达到控制炉膛负压的目的
PIC-4005指示值5mmH2O
PIC-5063(一段炉燃料气压力控制)
控制一段炉转化气出口温度
控制器PIC-5063通过调节压力控制阀PV-5063控制燃料混合罐压力。转化气出口温度的调节是依靠燃料进气量的调节来控制的,主控制时转化炉出口温度控制器TICI-117,从控制时天然气燃料压力控制器PIC-5063,两者采用串级控制
燃料气压控指示PIC-4002压力-0.25MPa,转化气温度控制TICI-117指示值813℃
MIC-0011(对流过热段燃料流量手控)
控制一段炉对流过热段温度
通过手动控制器MIC-0011调节过热段燃料流量来控制对流过热段温度,与烟道燃料压力控制器组成混合控制,控制对流段各预热过热段温度。
对流段各预热过热段所需12点温度在控制范围
PIC-5066(烟道燃料压控)FRC-5063(过热段燃料流量控制)
控制一段炉烟道气温度
控制器PIC-5066通过控制阀PV-5066调节燃料进烟道烧嘴压力,来控制进烟道燃料量的多少从而控制烟道气温度,达到调节对流段温度的目的,PIC-5066与FRC-5063组成串级控制系统,主控制是FRC-5063
烟道气温度指示值1000℃,过烟囱温度指示值130℃
FRC-0002(转化反应蒸汽用量流量控制)
控制转化反应所需合适水碳比
控制器FRC-0002通过控制阀FV-0002调节蒸汽流量控制水碳比。正常生产状况下,水碳比的调节是一种比例控制系统,主控制为原料压缩机出口流量控制器FRC-0001,从控制是FRC-0002根据原料天然气量的多少来调节
水碳比控制正常值为3.5
LIC-0028/LIC-0029(第一废液锅夹套水液位控制)
控制第一废锅水夹套液位
控制器LIC-0028/LIC-0029通过控制液位控制阀LV-008/LV-0029调节水夹套中夹套水液位
液位指示值为100%
LIC-0025(二段炉夹套水液位控制)
控制二段炉水水夹套液位在合理范围内
控制器LIC-0025通过控制液位控制阀LV-0025调节水夹套中夹套水液位
液位指示值为100%
1.1高低温变换系统
控制点
控制目的
控制方式
控制指标
TIC-010(出第二废锅转化气温度控制)
控制转化气入高变炉温度
控制器TIC-0010通过控制第二废锅旁路温度控制阀TV-0010调节入高温变换炉的转化气温度
转化气入高变温控TIC-1110指示值371℃
TRC-0011(如小低变温控)
控制进小低变的气体温度
控制器TRC-0011通过控制高变废热锅炉副线调节阀TV-0011来调节入小低变的气体温度
入小低变TRC-0011温控指示值210℃
TRC-5039(低变炉温控)
控制进低变炉的气体温度
控制器TRC-5039通过控制106-C副线调节阀TV-5039来调节入低变炉的气体温度
入低变TRC-5039温控指示值220℃
LIC-0078(变换气分离罐液位控制)
控制变换气分离罐液位在合理范围内
工艺冷凝液泵(109-J/JA)出口管线调节器LIC-4019与液位排放线上的调节器LIC-0078通过分程控制方式控制调节阀LV-4019与调节阀LV-0078动作
分离罐液位控制值50%
1.2脱碳系统
2.5.2主要操作条件
转化炉操作条件
项目
控制参数
控制点
控制方式
一段炉转化管压差MPa(A)
0.42
PDI-0055
转化管入口工艺气预热温度℃
510
TR1-3
MIC-0011与PIC-5066
一段炉转化管出口温度℃
813
TE1-117
PIC-5063
一段炉入口水碳比
3.5
FIC-0001 FIC-0002
二段转化炉出口温度℃
789
TI1-85 TR1-90
第二废锅后转化气温度℃
燃料气去烧嘴温度℃
371
185
TICA-0010
TI-5061
TICA-0010
MIC-0011与PIC-5066
烟道气出对流段温度℃
130
TI1-61
燃料气去烧嘴压力MPa
0.25
PI-5074
PIC-5063
一段转化炉顶负压
5mmH20
PT68PT4006PT4005
PICA4005
2.5.3连锁逻辑一览表
联锁逻辑位号
I-101B
联锁名称
一段炉联锁
逻辑描述
保护一段炉炉管,一段炉熄火
联锁起因
联锁值
联锁动作
一段炉辐射段炉膛负压高高PS4006
燃料气总管压力高高PS5065
燃料气总管压力低低PS5065
鼓风机出口压力低低PS4001
PV5063关
V5065-1关
V5065-2关
V5065-3关
联锁逻辑位号
I-101B
联锁名称
转化联锁
逻辑描述
系统紧急停车
联锁起因
联锁值
联锁动作
水碳比低低HCS
全厂紧急手动停车
MSI-101B
接一段炉联锁I-101B
汽包液位低低LS5090
仪表风压力低低PS5061
切断原料FV1 SP71
切断返氢FV5003
关去PSA阀V5051
低变炉联锁SP5开启
SP4 SP4A关闭
执行101B联锁
PSA停车
汽包上水LV1关闭
联锁逻辑位号
PDS4038
联锁名称
工艺冷凝液汽提塔联锁
逻辑描述
防止蒸汽带水入一段炉
联锁起因
联锁值
联锁动作
汽提塔压差高高PDS4038
LV4019关闭
FV4009开
HV4004开
联锁逻辑位号
PS5068 PS5067
联锁名称
过热段燃料压力低低高高联锁
逻辑描述
保护过热段盘管
联锁起因
联锁值
联锁动作
过热段燃料压力低低PS5068
过热段燃料压力高高PS5067
PV5066关
联锁逻辑位号
PSAS-1
联锁名称
PSA装置停车联锁
逻辑描述
PSA装置停车
联锁起因
联锁值
联锁动作
PSA装置停车联锁
V-5051关闭
0115-J停车
0110-J停车
联锁逻辑位号
FS4008
联锁名称
109J出口流量低低联锁
逻辑描述
维持102F及103E液位
联锁起因
联锁值
联锁动作
109J出口流量低低FS4008
备用泵自启
联锁逻辑位号
PS5003
联锁名称
夹套水泵压力低低联锁
逻辑描述
维持夹套补充水量
联锁起因
联锁值
联锁动作
夹套水泵压力低低
PS5003
LV5001关闭
联锁逻辑位号
LS202
联锁名称
表面冷凝器热井液位联锁
逻辑描述
维持热井液位
联锁起因
联锁值
联锁动作
表面冷凝器热井液位LS202
112J自启
联锁逻辑位号
LS27
联锁名称
吸收塔出气分离器液位高高联锁
逻辑描述
防止带水入PSA
联锁起因
联锁值
联锁动作
吸收塔出气分离器液位高高LV27
V5051关闭
联锁逻辑位号
LS104
联锁名称
吸收塔液位低低联锁
逻辑描述
防止吸收塔压力串入再生塔
联锁起因
联锁值
联锁动作
压缩机轴位移大保护NS201 NS202
汽轮机轴震动大保护VS203X VS203Y VS204X VS204Y
压缩机轴震动大保护
VS201X VS201V VS202X VS202Y
联锁逻辑位号
LS5801 LS5901
联锁名称
0110J/JA分离器液位联锁
逻辑描述
防止带水出界区
联锁起因
联锁值
联锁动作
0110J/JA出口分离器液位高LS5801/LS5901
DF5801/DF5901开启排液
联锁逻辑位号
PS5822/PS5922
联锁名称
0110J/JA润滑油油压低联锁
逻辑描述
保证润滑
联锁起因
联锁值
联锁动作
0110J/JA润滑油油压低PS5822/PS5922
P<0.2MPa
P<0.12MPa
辅油泵自启压缩机停车
联锁逻辑位号
TS5700-5708 TS5711 LS5723 PS5722 PS5702
联锁名称
0115J保护停车联锁
逻辑描述
保证0115J电机、轴承、齿轮箱温度、保证润滑
联锁起因
联锁值
联锁动作
0115J电机温度 TS5700-5702
0115J齿轮箱温度TS5703-5706
0115J轴承温度TS5707TS5708TS5711
润滑油箱油位低LS5723
润滑油压力低PS5722
0115J出口压力高PS5702
0115J压缩机停车紧急回路V5701开
联锁逻辑位号
LS5721 LS5722
联锁名称
0115J集油器液位高联锁
逻辑描述
保护0115J
联锁起因
联锁值
联锁动作
LS5721高液位
DF5721排液开
LS5722高液位
DF5722排液开
联锁逻辑位号
TS5709
联锁名称
0115J出口温度高联锁
逻辑描述
保护0115J
联锁起因
联锁值
联锁动作
TS5709高
TS5709喷液开
2.6催化剂装填及使用
2.6.1加氢和脱硫催化剂装填及使用
铁锰脱硫剂和氧化锌脱硫剂的装填
脱硫剂的装填,请严格按照催化剂厂商的说明书进行,以下装填方法仅供参考。
1、脱硫剂装填所需设备
(1)具有翻板阀的漏斗,用一根长度适当的帆布软管接在阀的底部。
(2)木塔板
(3)安全灯、空气源等
2、检查及准备
(1)先在底部装大直径耐火球,装至高标线100mm处,然后再装较小直径耐火球至标线并在其上放好筛网。
(2)用帆布筒将催化剂装入设备内,注意催化剂落下高度不超过1.5米,人站在放在催化剂上的木塔板上,边装边扒平催化剂,直到标线处为止。
(3)做好整个装填过程的记录
2.6.2转化催化剂的装填及使用
a、装填所需设备
(1)催化剂计量桶
(2)磅秤>50Kg。三个细帆布装料袋。
(3)桶子,每个10升,三个。
(4)装料漏斗二个,漏斗直径最大处为20mm,漏斗嘴内径50mm,外径<60mm
(5)真空卸触媒设备
(6)振荡器、压力表及专用测压装置
(7)带有刻度的测深尺或尺杆,长度最短为12米。
(8)空气源,压力为0.7MPa左右,5.5m3/min
(9)空气压差测试装置
(10)有铁丝网保护罩的吊灯或防爆型吊灯及电线
(11)检查催化剂用的筛网
(12)8倍左右的望远镜
为确保无杂物遗留在管内或催化剂托盘上,可采用真空卸触媒装置吸净异物,卸触媒的软管(Φ65mm)放入每根炉管底部,同时使用真空装置,就能保证把掉在里面的松散东西吸出。然后把吊灯放到每根转化管中去,建议使用8倍左右的望远镜来帮助检查。
C、检查催化剂
用一个孔眼为3mm的筛网过滤催化剂,除去触媒碎片并检查有无异物。
d、炉管的测量
用测深游标尺进行测量,装填前先测定总装填高度,确定每次装填高度,每装填一次后要测定剩下高度,经振荡后再测量,做好记录,并作为永久性记录保存,对于同一转化管分装两种催化剂时应先测量并记下底层触媒要求的深度。
e、装催化剂
每根转化炉管的催化剂装填量是按装满的计量桶来计
展开阅读全文