收藏 分销(赏)

线性代数课程复习提纲.doc

上传人:xrp****65 文档编号:8730488 上传时间:2025-02-28 格式:DOC 页数:4 大小:59KB
下载 相关 举报
线性代数课程复习提纲.doc_第1页
第1页 / 共4页
线性代数课程复习提纲.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
线性代数课程复习提纲 王航平 第一章 行列式: 1、行列式的定义: (1)(仅)适用于2、3阶行列式的对角线法则; (2)逆序数与排列的奇偶性; (3)n阶行列式的定义(的意义与展开,展开式中项的规律与符号的确定(3种方式)); (4)抽象表示技能。 2、行列式的基本计算: (1)利用定义计算; (2)利用行列式的性质,化行列式为上(下)三角行列式计算; (3)利用行列式的性质,化某行(列)只留一个(可能的)非零元,再用行列式的按行按列展开定理(子式,余子式,代数余子式)计算。 3、行列式的常用计算技巧: (1)利用行和或列和相等的特点计算; (2)加边法; (3)同时拆行(列)法; (4)递推法*; (5)利用Vandermonde行列式计算; (6) 数学归纳法*。 (此次考试仅要求有限阶的数字行列式与文字行列式的计算) 4、Cramer法则: 注意Cramer法则使用的前提条件: (1)方程组的个数与未知量的个数相等; (2)系数行列式不为零。 难点:抽象表示(n阶行列式的定义)、n阶行列式的计算。 第二章 矩阵及其运算 矩阵的各类运算: 1、 乘法: (1) 两矩阵相乘的前提(左矩阵的列数与右矩阵的行数相等); (2) 乘法交换律不成立(导致乘法公式不成立,二项式公式不成立,消去律不成立); (3) 积矩阵中元的表示。() 2、 转置、方阵的行列式、共轭矩阵:定义与运算性质(穿脱原理;、等)。 3、 逆矩阵: (1) 逆矩阵的定义; (2) 可逆的充要条件(行列式不为零、非奇异、满秩); (3) 伴随矩阵;利用伴随矩阵求逆。(注意伴随矩阵的计算程序,以保证计算结果的准确性) 4、 矩阵的分块: (1) 分块运算的定义,尤其是分块的转置、分块乘法中左(右)矩阵的块保持在左(右)边; (2) 分块求逆法(设未知矩阵求解矩阵方程、准对角矩阵的求逆) 重点:矩阵的求逆(要求掌握各种求逆方法)。 第三章 矩阵的初等变换与线性方程组 1、矩阵的初等变换、行阶梯形矩阵、行最简矩阵; 2、子式、求矩阵的秩,三秩相等定理; 3、线性方程组的有解判别定理; 4、初等矩阵及八字原则(左行右列,首尾为主); 5、利用初等变换求矩阵的逆、求解矩阵方程。 第四章 向量组的线性相关性 1、线性表示、线性组合、两向量组的等价 2、 线性相关性: (1) 定义(2个); (2) 相关性的判别:转为向量方程是否有非零解,转为齐次线性方程组是否有非零解;转为求矩阵的秩; 向量组线性相关向量方程有非零解 矩阵的秩 3、极大无关组、秩及其求法;(对矩阵施行初等行变换,不改变矩阵列向量之间的线性关系。) 4、相关性与矩阵间的关系(表示矩阵等); (3) (即为基本定理) (4) 当线性无关时,有 5、 相关性的有关性质: 尤其是线性相性的基本定理:向量组A可由向量组B线性表示, 则(-秩) 6、 向量空间: (1) 定义与判别; (2) 生成子空间及相关性质: (3) 基与维数:能找出给定空间的基(一般为常见空间) 7、求解线性方程组(基础解系、通解、特解。有解判定定理。系数矩阵的秩与基础解系所含向量个数的关系)(注意求解程序,以保证计算的正确性) 基本题型: (1) 相关性的证明; (2) 求给定向量组的极大无关组、秩,并用该极大无关组表示其余向量; (3) 相关性的判断; (4) 求解线性方程组。 (5) 重点:线性相关性、求解线性方程组。 第五章 相似矩阵与二次型 1、向量的内积:定义(对称性、线性性、非负性)、长度、正交; 2、正交向量组、规范正交基、Schmidt正交化、正交矩阵、正交变换; 3、特征值、特征向量、特征多项式及Hamilton-Cayley定理、属于不同特征值的特征向量线性无关; 4、相似矩阵:定义(是矩阵间的一种等价关系)、相似矩阵具有相同的特征多项式、相似对角化、矩阵能相似对角化的充要条件、充分条件; 5、实对称矩阵的相似性:特征值必为实数、属于不同特征值的特征向量必正交、任一特征值的代数重数等于其几何重数、实对称矩阵必可相似对角化、实对称矩阵必可正交对角化; 6、二次型:二次型矩阵、二次型的秩、矩阵的合同变换、标准形、惯性定理; 7、二次型的正定性:正定二次型、正定矩阵、正定的充要条件、霍尔维茨定理(顺序主子式)。 基本题型: 1、 用正交变换化二次型为标准形; 2、 相似对角化及其证明; 3、 正定矩阵证明。 注意:注意有关结论的前提,是一般的方阵,还是实对称矩阵。 第六章 线性空间与线性变换 1、 线性空间的定义:11条 2、 线性空间的性质及证明:公理化方法 3、 子空间的定义及其判断 4、 维数、基与坐标:要求能熟练计算 5、 线性空间的同构及应用同构理论解决一般线性空间中的问题 6、 过渡矩阵与基变换、坐标变换:要求熟练矩阵表示,过渡矩阵的列向量的几何意义 7、 线性变换与其在某基下矩阵:基下矩阵的列向量的几何意义 8、 线性变换的性质与向量组与象向量组的线性关系: 线性相关线性相关,但其逆不真。 9、 线性变换的象与核、线性变换的秩 10、 同一线性变换在不同基下的矩阵相似。 基本题型: 1、 线性空间与子空间的判定; 2、 求给定间的基与维数、求给定向量在定间基下的坐标; 3、 求过渡矩阵与基变换、坐标变换(常通过第三个基进行过渡) 4、 求基下矩阵。                                2004/6/19
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服