收藏 分销(赏)

软地基处理讲义.doc

上传人:仙人****88 文档编号:8667160 上传时间:2025-02-24 格式:DOC 页数:44 大小:1.38MB
下载 相关 举报
软地基处理讲义.doc_第1页
第1页 / 共44页
软地基处理讲义.doc_第2页
第2页 / 共44页
点击查看更多>>
资源描述
软土地基处理 一、 处理方法与特点 二、 复合地基计算原理 三、 换填法设计 四、 强夯法设计 五、 预压法设计 六、 水泥土搅拌法设计 七、 托换技术 4.1地基处理方法 4.1.1地基处理的目的 软土地基处理的目的是利用换填、夯实、挤密、排水、胶结、加筋和热学等方法对地基土进行加固,用以改良地基土的工程特性,主要包括: 1)提高地基的抗剪切强度 2)降低地基的压缩性 3)改善地基的透水特性 一种增加地基土的透水性加快固结,另一种是降低透水性或减少其水压力(基坑抗渗透)。 4.1.2 地基处理方法分类及应用范围 软土地基处理的基本方法主要有置换、夯实、挤密、排水、胶结、加筋、和热学等方法。 常用地基处理方法的原理、作用及适用范围如下。 1. 换土垫层法 (1)垫层法 其基本原理是挖除浅层软弱土或不良土,分层碾压或夯实土,按回填的材料可分为砂(或砂石)垫层、碎石垫层、粉煤灰垫层、干渣垫层、土(灰土、二灰)垫层等。干渣分为分级干渣、混合干渣和原状干渣;粉煤灰分为湿排灰和调湿灰。换土垫层法可提高持力层的承载力,减少沉降量;常用机械碾压、平板振动和重锤夯实进行施工。 该法常用于基坑面积宽大和开挖土方量较大的回填土方工程,一般适用于处理浅层软弱土层(淤泥质土、松散素填土、杂填土、浜填土以及已完成自重固结的冲填土等)与低洼区域的填筑。一般处理深度为2~3m。适用于处理浅层非饱和软弱土层、素填土和杂填土等。 (2)强夯挤淤法 采用边强夯、边填碎石、边挤淤的方法,在地基中形成碎石墩体。可提高地基承载力和减小变形。 适用于厚度较小的淤泥和淤泥质土地基,应通过现场试验才能确定其适应性。 2.振密、挤密法 振密、挤密法的原理是采用一定的手段,通过振动、挤压使地基土体孔隙比减小,强度提高,达到地基处理的目的。软土地基中常用强夯法 强夯法 利用强大的夯击能,迫使深层土液化和动力固结,使土体密实,用以提高地基土的强度并降低其压缩性。 3.排水固结法 其基本原理是软土地基在附加荷载的作用下,逐渐排出孔隙水,使孔隙比减小,产生固结变形。在这个过程中,随着土体超静孔隙水压力的逐渐消散,土的有效应力增加,地基抗剪强度相应增加,并使沉降提前完成或提高沉降速率。 排水固结法主要由排水和加压两个系统组成。排水可以利用天然土层本身的透水性,尤其是上海地区多夹砂薄层的特点,也可设置砂井、袋装砂井和塑料排水板之类的竖向排水体。加压主要是地面堆载法、真空预压法和井点降水法。为加固软弱的粘土,在一定条件下,采用电渗排水井点也是合理而有效的。 (1)堆载预压法 在建造建筑物以前,通过临时堆填土石等方法对地基加载预压,达到预先完成部分或大部分地基沉降,并通过地基土固结提高地基承载力,然后撤除荷载,再建造建筑物。 临时的预压堆载一般等于建筑物的荷载,但为了减少由于次固结而产生的沉降,预压荷载也可大于建筑物荷载,称为超载预压。 为了加速堆载预压地基固结速度,常可与砂井法或塑料排水带法等同时应用。如粘土层较薄,透水性较好,也可单独采用堆载预压法。 适用于软粘土地基。 (2)砂井法(包括袋装砂井、塑料排水带等) 在软粘土地基中,设置一系列砂井,在砂井之上铺设砂垫层或砂沟,人为地增加土层固结排水通道,缩短排水距离,从而加速固结,并加速强度增长。砂井法通常辅以堆载预压,称为砂井堆载预压法。 适用于透水性低的软弱粘性土,但对于泥炭土等有机质沉积物不适用。 (3)真空预压法 在粘土层上铺设砂垫层,然后用薄膜密封砂垫层,用真空泵对砂垫层及砂井抽气,使地下水位降低,同时在大气压力作用下加速地基固结。 适用于能在加固区形成(包括采取措施后形成)稳定负压边界条件的软土地基。 (4)真空-堆载联合预压法 当真空预压达不到要求的预压荷载时,可与堆载预压联合使用,其堆载预压荷载和真空预压荷载可叠加计算。 适用于软粘土地基。 (5)降低地下水位法 通过降低地下水位使土体中的孔隙水压力减小,从而增大有效应力,促进地基固结。 适用于地下水位接近地面而开挖深度不大的工程,特别适用于饱和粉、细砂地基。 (6)电渗排水法 在土中插入金属电极并通以直流电,由于直流电场作用,土中的水从阳极流向阴极,然后将水从阴极排除,而不让水在阳极附近补充,借助电渗作用可逐渐排除土中水。在工程上常利用它降低粘性土中的含水量或降低地下水位来提高地基承载力或边坡的稳定性。 适用于饱和软粘土地基。 4.置换法 其原理是以砂、碎石等材料置换软土,与未加固部分形成复合地基,达到提高地基强度的目的。 (1)振冲置换法(或称碎石桩法) 碎石桩法是利用一种单向或双向振动的冲头,边喷高压水流边下沉成孔,然后边填入碎石边振实,形成碎石桩。桩体和原来的粘性土构成复合地基,以提高地基承载力和减小沉降。 适用于地基土的不排水抗剪强度大于20kPa的淤泥、淤泥质土、砂土、粉土、粘性土和人工填土等地基。对不排水抗剪强度小于20kPa的软土地基,采用碎石桩时须慎重。 (2)石灰桩法 在软弱地基中用机械成孔,填入作为固化剂的生石灰并压实形成桩体,利用生石灰的吸水、膨胀、放热作用以及土与石灰的物理化学作用,改善桩体周围土体的物理力学性质,同时桩与土形成复合地基,达到地基加固的目的。 适用于软弱粘性土地基。 (3)强夯置换法 对厚度小于6m的软弱土层,边夯边填碎石,形成深度3~6m、直径为2m左右的碎石拄体,与周围土体形成复合地基。 适用于软粘土。 (4)水泥粉煤灰碎石桩(CFG桩) 是在碎石桩基础上加进一些石屑、粉煤灰和少量水泥,加水拌和,用振动沉管打桩机或其它成桩机具制成的具有一定粘结强度的桩。桩和桩间土通过褥垫层形成复合地基。 适用于填土、饱和及非饱和粘性土、砂土、粉土等地基。 (6)EPS超轻质料填土法 发泡聚苯乙烯(EPS)的重度只有土的1/50~1/100,并具有较好的强度和压缩性能, 用于填土料可有效减少作用在地基上的荷载,需要时也可置换部分地基土,以达到更好的效果。 适用于软弱地基上的填方工程。 5.加筋法 通过在土层中埋设强度较大的土工聚合物、拉筋、受力杆件等提高地基承载力、减小沉降、或维持建筑物稳定。 (1)土工合成材料 土工合成材料是岩土工程领域中的一种新型建筑材料,是用于土工技术和土木工程,而以聚合物为原料的具渗透性的材料名词的总称。它是将由煤、石油、天然气等原材料制成的高分子聚合物通过纺丝和后处理制成纤维,再加工制成各种类型的产品,置于土体内部、表面或各层土体之间,发挥加强或保护土体的作用。常见的这类纤维有:聚酰胺纤维(PA,如尼龙、锦纶)、聚酯纤维(如涤纶)、聚丙烯纤维(PP,如腈纶)、聚乙烯纤维(PE,如维纶)以及聚氯乙烯纤维(PVC,如氯纶)等。 利用土工合成材料的高强度、韧性等力学性能,扩散土中应力,增大土体的抗拉强度,改善土体或构成加筋土以及各种复合土工结构。土工合成材料的功能是多方面的,主要包括排水作用、反滤作用、隔离作用和加筋作用。 适用于砂土、粘性土和软土,或用作反滤、排水和隔离材料。 (2)加筋土 把抗拉能力很强的拉筋埋置在土层中,通过土颗粒和拉筋之间的摩擦力形成一个整体,用以提高土体的稳定性。 适用于人工填土的路堤和挡墙结构。 (3)土层锚杆 土层锚杆是依赖于土层与锚固体之间的粘结强度来提供承载力的,它使用在一切需要将拉应力传递到稳定土体中去的工程结构,如边坡稳定、基坑围护结构的支护、地下结构抗浮、高耸结构抗倾覆等。 适用于一切需要将拉应力传递到稳定土体中去的工程。 (4)土钉 土钉技术是在土体内放置一定长度和分布密度的土钉体,与土共同作用,用以弥补土体自身强度的不足。不仅提高了土体整体刚度,又弥补了土体的抗拉和抗剪强度低的弱点,显著提高了整体稳定性。 适用于开挖支护和天然边坡的加固。 (5)树根桩法 在地基中沿不同方向,设置直径为75~250mm的细桩,可以是竖直桩,也可以是斜桩,形成如树根状的群桩,以支撑结构物,或用以挡土,稳定边坡。 适用于软弱粘性土和杂填土地基。 6.胶结法 在软弱地基中部分土体内掺入水泥、水泥砂浆以及石灰等物,形成加固体,与未加固部分形成复合地基,以提高地基承载力和减小沉降。 (1)注浆法 其原理是用压力泵把水泥或其它化学浆液注入土体,以达到提高地基承载力、减小沉降、防渗、堵漏等目的。 适用于处理岩基、砂土、粉土、淤泥质粘土、粉质粘土、粘土和一般人工填土,也可加固暗浜和使用在托换工程中。 (2)高压喷射注浆法 将带有特殊喷嘴的注浆管,通过钻孔置入要处理土层的预定深度,然后将水泥浆液以高压冲切土体,在喷射浆液的同时,以一定速度旋转、提升,形成水泥土圆柱体;若喷嘴提升而不旋转,则形成墙状固结体。可以提高地基承载力、减少沉降、防止砂土液化、管涌和基坑隆起。 适用于淤泥、淤泥质土、人工填土等地基。对既有建筑物可进行托换加固。 (3)水泥土搅拌法 利用水泥、石灰或其它材料作为固化剂的主剂,通过特别的深层搅拌机械,在地基深处就地将软土和固化剂(水泥或石灰的浆液或粉体)强制搅拌,形成坚硬的拌和拄体,与原地层共同形成复合地基。 适用于淤泥、淤泥质土、粉土和含水量较高且地基承载力标准值不大于120kPa的粘性土地基。 7.冷热处理法 冻结法 通过人工冷却,使地基温度低到孔隙水的冰点以下,使之冷却,从而具有理想的截水性能和较高的承载力。适用于软粘土或饱和的砂土地层中的临时措施。 8.其它 (1)锚杆静压桩 是结合锚杆和静压桩技术而发展起来的,它是利用建筑物的自重作为反力架的支承,用千斤顶把小直径的预制桩逐段压入地基,在将桩顶和基础紧固成一体后卸荷,以达到减少建筑物沉降的目的。 主要使用于加固处理淤泥质土、粘性土、人工填土和松散粉土。 (2)沉降控制复合桩基 是指桩与承台共同承担外荷载,按沉降要求确定用桩数量的低承台摩擦桩基。目前上海地区沉降控制复合桩基中的桩,宜采用桩身截面边长250mm、长细比在80左右的预制混凝土小桩,同时工程中实际应用的平均桩距一般在5~6倍桩径以上。 主要适用于较深厚软弱地基上,以沉降控制为主的八层以下多层建筑物。 4.2 复合地基计算理论 一、基本概念 1.复合地基定义 复合地基是指天然地基在地基处理过程中部分土体得到增强,或被置换,或在天然地基中设置加筋材料,加固区是由基体(天然地基土体)和增强体两部分组成的人工地基。复合地基与桩基都是采用以桩的形式处理地基,故两者有其相似之处,但复合地基属于地基范畴,而桩基属于基础范畴,所以两者又有其本质区别。复合地基中桩体与基础往往不是直接相连的,它们之间通过垫层(碎石或砂石垫层)来过渡;而桩基中桩体与基础直接相连,两者形成一个整体。因此,它们的受力特性也存在着明显差异。即复合地基的主要受力层在加固体内而桩基的主要受力层是在桩尖以下一定范围内。由于复合地基的理论的最基本假定为桩与桩周土的协调变形。为此,从理论而言,复合地基中也不存在类似桩基中的群桩效应。 2.复合地基分类 根据地基中增强体的方向可分为水平向增强体复合地基和竖向增强体复合地基。水平向增强体复合地基主要包括由各种加筋材料,如土工聚合物、金属材料格栅等形成的复合地基。竖向增强体复合地基通常称为桩体复合地基。 在桩体复合地基中,桩的作用是主要的,而地基处理中桩的类型较多,性能变化较大。为此,复合地基的类型按桩的类型进行划分较妥。然而,桩又可根据成桩所采用的材料以及成桩后桩体的强度(或刚度)来进行分类。 桩体如按成桩所采用的材料可分为: 2) 散体土类桩——如碎石桩、砂桩等; 3) 水泥土类桩——如水泥土搅拌桩、旋喷桩等; 4) 混凝土类桩——树根桩、CFG桩等。 桩体如按成桩后的桩体的强度(或刚度)可分为: 1) 柔性桩——散体土类桩属于此类桩; 2) 半刚性桩——水泥土类桩; 3) 刚性桩——混凝土类桩。 半刚性桩中水泥掺入量的大小将直接影响桩体的强度。当掺入量较小时,桩体的特性类似柔性桩;而当掺入量较大时,又类似于刚性桩,为此,它具有双重特性。 由柔性桩和桩间土所组成的复合地基可称为柔性桩复合地基,其它依次为半刚性桩复合地基、刚性桩复合地基。 二、复合地基承载力计算 1、竖向增强体复合地基承载力计算 复合地基的极限承载力可用下式表示: (4.1.5-1) 式中 一桩体极限承载力,kPa; 一天然地基极限承载力,kPa; 一反映复合地基中桩体实际极限承载力的修正系数,与地基土质情况、 成桩方法等因素有关,一般大于1.0; 一反映复合地基中桩间土实际极限承载力的修正系数,其值与地基土 质情况、成桩方法等因素有关,可能大于1.0,也可能小于1.0; 一复合地基破坏时,桩体发挥其极限强度的比例,也称为桩体极限强度发挥度; 一复合地基破坏时,桩间土发挥其极限强度的比例,也称为桩间土极限强度发挥度; 一复合地基置换率,,其中Ap为桩体面积,A为对应的加固面积。 对刚性桩复合地基和柔性桩复合地基,桩体极限承载力可采用类似摩擦桩极限承载力计算式计算,其表达式为 (4.1.5-2) 式中 一桩周摩阻力极限值; 一桩身周边长度; 一桩身截面面积; 一桩端土极限承载力; 一按土层划分的各段桩长。对柔性桩,桩长大于临界桩长时,计算桩 长应取临界桩长值。 按式(4.1.5-2)计算桩体极限承载力外,尚需计算桩身材料强度允许的单桩极限承载力,即 (4.1.5-3) 式中 一桩体极限抗压强度。 由式(4.1.5-2)和式(4.1.5-3)计算所得的二者中取较小值为桩的极限承载力。 2、水平向增强体复合地基承载力计算 水平向增强体复合地基主要包括在地基中铺设各种加筋材料,如土工织物、土工格栅等形成的复合地基。复合地基工作性状与加筋体长度、强度,加筋层数,以及加筋体与土体间的粘聚力和摩擦系数等因素有关。水平向增强体复合地基破坏可具有多种形式,影响因素也很多(龚晓南,1992)。到目前为止,许多问题尚未完全搞清楚,水平向增强体复合地基的计算理论尚不成熟。这里只介绍Florkiewicz(1990)承载力公式,供借鉴。 图4.1.5-1表示一水平向增强体复合地基上的条形基础。刚性条形基础宽度为,下卧厚度为的加筋复合土层,其视粘聚力为,内摩擦角为,复合土层下的天然土层粘聚力为,内摩擦角为。Florkiewicz认为基础的极限荷载是无加筋体(=0)的双层土体系的常规承载力和由加筋引起的承载力提高值之和,即 (4.1.5-5) 复合地基中各点的视粘聚力值取决于所考虑的方向,其表达式(Schlosser和Long,1974)为 (4.1.5-6) 式中 δ一考虑的方向与加筋体方向的倾斜角; 一加筋体材料的纵向抗拉强度。 采用极限分析法分析,地基土体滑动模式取Prandtl滑移面模式,当加筋复合土层中加筋体沿滑移面AC滑动时,地基破坏。此时,刚性基础竖直向下速度为,加筋体沿AC面滑动引起的能量消散率增量为 (4.1.5-7) 忽略了ABCD区和BGFD区中由于加筋体存在(≠0)能量消散率增量的增加。根据上限定理,可得到承载力提高值表示式如下: (4.1.5-8) 式中值可根据Prandtl滑移面模式确定。 三、复合地基沉降计算 在各类复合地基沉降实用计算方法中,通常把沉降量分为二部分,即加固区土体压缩量和加固区下卧层土体压缩量,而复合地基总沉降表达式为 (4.1.6-1) 的计算方法一般有以下三种: 1、复合模量法 将复合地基加固区中增强体和基体两部分视为一复合土体,采用复合压缩模量Ecs来评价复合土体的压缩性。采用分层总和法计算,表达式为 (4.1.6-2) 式中—第i层复合土上附加应力增量; —第i层复合土层的厚度。 值可通过面积加权法计算或弹性理论表达式计算,也可通过室内试验测定。 面积加权表达式为 (4.1.6-3) 式中—复合地基面积置换率; —桩体压缩模量; —土体压缩模量。 2、应力修正法 在该法中,根据桩间土承担的荷载,按照桩间土的压缩模量,忽略增强体的存在,采用分层总和法计算加固区土层的压缩量。 (4.1.6-4) 式中 ——应力修正系数,; ——桩土应力比; ——复合地基在荷载作用下第层桩间土的附加应力增量,相当于未加固地基在荷载作用下第层土上的附加应力增量; ——未加固地基在荷载作用下相应厚度内的压缩量。 3、桩身压缩量法 在荷载作用下,桩身压缩量为 (4.1.6-5) 式中 —应力集中系数,; —桩身长度,即等于加固区厚度; —桩身材料变形模量; —桩底端端承力密度。 复合地基加固区下卧层土层压缩量通常采用分层总和法计算。在分层总和法计算中,作用在下卧层土体上的荷载或土体中附加压力是难以精确计算的。目前在工程应用上,常采用下述三种方法计算: 1、应力扩散法 图4.1-1 下卧层附加应力计算 应力扩散法计算加固区下卧层上附加压力示意图如图4.1-1所示。复合地基上荷载密度为,作用宽度为,长度为,加固区厚度为,压力扩散角为,则作用在下卧层上的为 (4.1.6-6) 对条形基础,仅考虑宽度方向扩散,则上式可改写为 (4.1.6-7) 采用应力扩散法计算关键是压力扩散角的合理选用。 2、等效实体法 等效实体法计算加固区下卧层上附加应力示意图如图4.1.6-2(b)所示。复合地基上荷载密度为,作用面长度为,宽度为,加固区厚度为,为等效实体侧摩阻力密度,则作用在下卧层上的附加应力为 (4.1.6-8) 对于条形基础,上式可改写为 (4.1.6-9) 等效实体法计算关键是侧摩阻力的计算。 3、改进Geddes法 黄绍铭建议采用下述方法计算下卧层土层中应力。复合地基总荷载为,桩体承担,桩间土承担。桩间土承担的荷载在地基所产生的竖向应力,其计算方法和天然地基中应力计算方法相同。桩体承担的荷载在地基中所产生的竖向应力采用Geddes法计算。然后叠加两部分应力得到地基中总的竖向应力。 图4.1.6-3 单桩荷载的组合 S.D.Geddes(1996)年将长度为L的单桩在荷载Q作用下对地基土产生的作用力,可近似地视作如图4.1.6-3所示的桩端集中力,桩侧均匀分布的摩阻力和桩侧随深度线性增长的分布摩阻力等三种形式荷载的组合。S.D.Geddes根据弹性理论半无限体中作用一集中力的Mindlin应力解积分,导出了单桩的上述三种形式荷载在地基中产生的应力计算公式。地基中的竖向应力可按下式计算 (4.1.6-10) 式中,为竖向应力系数。 对于由n根桩组成的桩群,地基中竖向应力可对这n根桩逐根采用上式计算后叠加求得。由桩体荷载和桩间土荷载共同产生的地基中竖向应力表达式为 (4.1.6-11) 4.2地基处理技术 4.2.1换填法 当软弱土地基的承载力和变形满足不了建筑物的要求,而软弱土层的厚度又不很大时将基础底面以下处理范围内的软弱土层的部分或全部挖去,然后分层换填强度较大的砂(碎石、素土、灰土、高炉干渣、粉煤灰)或其它性能稳定、无侵蚀性等材料,并压(夯、振)实至要求的密实度为止,这种地基处理的方法称为换填法.它还包括低洼地域筑高(平整场地)或堆填筑高(道路路基)。 机械碾压、重锤夯实、平板振动可作为压(夯、振)实垫层的不同机具对待,这些施工方法不但可处理分层回填土,又可加固地基表层土。 按回填材料不同,垫层可分为:砂垫层、砂石垫层、碎石垫层、素土垫层、灰土垫层、二灰垫层、干渣垫层和粉煤灰垫层等。 《建筑地基处理技术规范》(JGJ79-2002)中规定:换填法适用于淤泥、淤泥质土、湿陷性黄土、素填土、杂填土地基及暗沟、暗塘等的浅层处理。 虽然不同材料的垫层,其应力分布稍有差异,但从试验结果分析其极限承载力还是比较接近的;通过沉降观测资料发现,不同材料垫层的特点基本相似,故可将各种材料的垫层设计都近似的按砂垫层的计算方法进行计算。但对湿陷性黄土、膨胀土、季节性冻土等某些特殊土采用换土垫层处理时,因其主要处理目的是为了消除地基土的湿陷性、膨胀性和冻胀性,所以在设计时需考虑的解决问题的关键也应有所不同。 1、压实原理 当粘性土的土样含水量较小时,其粒间引力较大,在一定的外部压实功能作用下,如还不能有效地克服引力而使土粒相对移动,这时压实效果就比较差。当增大土样含水量时,结合水膜逐渐增厚,减小了引力,土粒在相同压实功能条件下易于移动而挤密,所以压实效果较好。但当土样含水量增大到一定程度后,孔隙中就出现了自由水,结合水膜的扩大作用就不大了,因而引力的减少就显著,此时自由水填充在孔隙中,从而产生了阻止土粒移动的作用,所以压实效果又趋下降,因而设计时要选择一个”最优含水量”,这就是土的压实机理。 在工程实践中,对垫层的碾压质量的检验,要求能获得填土的最大干密度,其最大干密度可用室内击实试验确定。在标准的击实方法的条件下,对于不同含水量的土样,可得到不同的干密度,从而绘制干密度和制备含水量的关系曲线,在曲线上的峰值,即为最大干密度与之相应的制备含水量为最优含水量。 垫层的作用主要有: (1)提高地基承载力 大家知道,浅基础的地基承载力与持力层的抗剪强度有关。如果以抗剪强度较高的砂或其它填筑材料代替软弱的土,可提高地基的承载力,避免地基破坏。 (2)减少沉降量 一般地基浅层部分沉降量在总沉降量中所占的比例是比较大的。以条形基础为例,在相当于基础宽度的深度范围内的沉降量约占总沉降量50%左右。如以密实砂或其它填筑材料代替上部软弱土层,就可以减少这部分的沉降量。由于砂垫层或其它垫层对应力的扩散作用,使作用在下卧层土上的压力较小,这样也会相应减少下卧层土的沉降量。 (3)加速软弱土层的排水固结 建筑物的不透水基础直接与软弱土层相接触时,在荷载的作用下,软弱土层地基中的水被迫绕基础两侧排出,因而使基底下的软弱土不易固结,形成较大的孔隙水压力,还可能导致由于地基强度降低而产生塑性破坏的危险。砂垫层和砂石垫层等垫层材料透水性大,软弱土层受压后,垫层可作为良好的排水面,可以使基础下面的孔隙水压力迅速消散,加速垫层下软弱土层的固结和提高其强度,避免地基土塑性破坏。 (4)防止冻胀 因为粗颗粒的垫层材料孔隙大,不易产生毛细管现象,因此可以防止寒冷地区土中结冰所造成的冻胀。这时,砂垫层的底面应满足当地冻结深度的要求。 (5)消除膨胀土的胀缩作用 在膨胀土地基上可选用砂、碎石、块石、煤渣、二灰或灰土等材料作为垫层以消除胀缩作用,但垫层厚度应依据变形计算确定,一般不少于0.3m,且垫层宽度应大于基础宽度,而基础的两侧宜用与垫层相同的材料回填。 2、垫层设计 对垫层的设计,即要求有足够的厚度以置换可能被剪切破坏的软弱土层,又要求有足够大宽度以防止砂垫层向两侧挤出。 (1)垫层厚度的确定 垫层厚度应根据垫层底部下卧土层的承载力确定,并符合下式要求: (4.2.1-1) 式中 ——垫层底面处的附加应力设计值(kPa); ——垫层底面处土的自重压力值(kPa); ——经深度修正后垫层底面处土层的地基承载力特征值(kPa)。 垫层底面处的附加压力值可按压力扩散角 进行简化计算: 条形基础: (4.2.1-2) 矩形基础: (4.2.1-3) 式中 ——矩形基础或条形基础底面的宽度(m); ——矩形基础底面的长度(m); ——基础底面压力的设计值(kPa); ——基础底面处土的自重压力值(kPa); ——基础底面下垫层的厚度(m); ——垫层的压力扩散角(°),可按表4.2.1-1采用。 具体计算时,一般可根据垫层的承载力确定出基础宽度,再根据下卧土层的承载力确定出垫层的厚度。可先假设一个垫层的厚度,然后按式(4.2.1-1)进行验算,直至满足要求为止。 表4.2.1-1 压力扩散角(°) 换填材料 中砂、粗砂、砾砂、圆砾、角砾卵石、碎石 粘性土和粉土 (8<<14) 灰土 0.25 20 6 28 30 23 注:当<0.25时,除灰土仍取=外,其余材料均取=; 当0.25<<0.5时,值可内插求得。 (2)垫层宽度的确定 垫层的底面宽度应以满足基础底面应力扩散和防止垫层向两侧挤出为原则进行设计。关于宽度计算,目前还缺乏可靠的方法。一般可按下式计算或根据当地经验确定。 (4.2.1-4) 式中 ——垫层底面宽度(m); ——垫层的压力扩散角(°),可按表4.2.1-1采用;当<0.25时,仍按=0.25 取值。 垫层顶面每边宜比基础底面大0.3m,或从垫层底面两侧向上按当地开挖基坑经验的要求放坡,整片垫层的宽度可根据施工的要求适当加宽。 (3)垫层承载力的确定 垫层的承载力宜通过现场试验确定,并应验算下卧层的承载力。 (4)沉降计算 对于重要的建筑或垫层下存在软弱下卧层的建筑,还应进行地基变形计算。建筑物基础沉降等于垫层自身的变形量与下卧土层的变形量之和。 对超出原地面标高的垫层或换填材料的密度高于天然土层密度的垫层,宜早换填并考虑其附加的荷载对建造的建筑物及邻近建筑物的影响。 2、垫层施工 (1)机械碾压法 机械碾压法是采用各种压实机械来压实地基土。此法常用于基坑底面积宽大开挖土方量较大的工程。 工程实践中,对垫层碾压质量的检验,要求获得填土最大干密度。其关键在于施工时控制每层的铺设厚度和最优含水量,其最大干密度和最优含水量宜采用击实试验确定。所有施工参数(如施工机械、铺填厚度、碾压遍数、与填筑含水量等)都必须由工地试验确定。在施工现场相应的压实功能下,由于现场条件终究与室内试验不同,因而对现场应以压实系数与施工含水量进行控制。 (2)重锤夯实法 重锤夯实法是用起重机将夯锤提升到某一高度,然后自由落锤,不断重复夯击以加固地基。重锤夯实法一般适用于地下水位距地表0.8m以上稍湿的粘性土、砂土、湿陷性黄土、杂填土和分层填土。 重锤夯实法的主要设备为起重机械、夯锤、钢丝绳和吊钩等。 当直接用钢丝绳悬吊夯锤时,吊车的起重能力一般应大于锤重的三倍。采用脱钩夯锤时,起重能力应大于夯锤重量的1.5倍。 夯锤宜采用圆台形,锤重宜大于2t,锤底面单位静压力宜为15~20kPa。夯锤落距宜大于4m。 (3)平板振动法 平板振动法是使用振动压实机来处理无粘性土或粘粒含量少、透水性较好的松散杂填土地基的一种方法。 振动压实的效果与填土成分、振动时间等因素有关,一般振动时间越长,效果越好,但振动时间超过某一值后,振动引起的下沉基本稳定,再继续振动就不能起到进一步压实的作用。为此,需要施工前进行试振,得出稳定下沉量和时间的关系。对主要由炉渣、碎砖、瓦块组成的建筑垃圾,振动时间约在1mim以上;对含炉灰等细粒填土,振动时间约为3~5mim,有效振实深度为1.2~1.5m。 振实范围应从基础边缘放出0.6m左右,先振基槽两边,后振中间,其振动的标准是以振动机原地振实不再继续下沉为合格,并辅以轻便触探试验检验其均匀性及影响深度。振实后地基承载力宜通过现场载荷试验确定。一般经振实的杂填土地基承载力可达100~120kPa。 (4)垫层材料选择 1)砂石 应选用级配良好的中粗砂,含泥量不超过3%,并应除去树皮、草皮等杂质。若用细砂,应掺入30%~50%的碎石,碎石最大粒径不宜大于50mm。 2)粘土(均质土) 土料中有机质含量不得超过5%,亦不得含有冻土或膨胀土。当含有碎石时,其粒径不宜大于50mm。 3)灰土 体积比宜为2:8或3:7。土料宜用粘性土及塑性指数大于4的粉土,不得含有松软杂质,并应过筛,其颗粒不得大于15mm。石灰宜用新鲜的消石灰,其颗粒不得大于5mm。 4)素土 素土土料中有机质含量不得超过5%,亦不得含有冻土或膨胀土,不得夹有砖、瓦和石块等渗水材料,碎石粒径不得大于50mm。 5)粉煤灰 可分为湿排灰和调湿灰。可用于道路、堆场和中、小型建筑、构筑物换填垫层。粉煤灰垫层上宜覆土30~0cm。 6)干渣 干渣垫层材料可根据工程的具体条件选用分级干渣、混合干渣或原状干渣。小面积垫层一般用8~40mm与40~60mm的分级干渣,或0~60mm的混合干渣;大面积铺垫时,可采用混合干渣或原状干渣,原状干渣最大粒径不大于200mm或不大于碾压分层虚铺厚度的2/3。 用于垫层的干渣技术条件应符合下列规定:稳定性合格;松散密度不小于1.1t/m3;泥土与有机质含量不大于5%。对于一般场地平整,干渣质量可不受上述指标限制。 4.2.2 排水固结 1、概述   排水固结法是对天然地基,或先在地基中设置砂井(袋装砂井或塑料排水带)等竖向排水体,然后利用建筑物本身重量分级逐渐加载;或在建筑物建造前在场地先行加载预压,使土体中的孔隙水排出,逐渐固结,地基发生沉降,同时强度逐步提高的方法。该法常用于解决软粘土地基的沉降和稳定问题,可使地基的沉降在加载预压期间基本完成或大部分完成,使建筑物在使用期间不致产生过大的沉降和沉降差。同时,可增加地基土的抗剪强度,从而提高地基的承载力和稳定性。   实际上,排水固结法是由排水系统和加压系统两部分共同组合而成的。   排水系统是一种手段,如没有加压系统,孔隙中的水没有压力差就不会自然排出,地基也就得不到加固。如果只增加固结压力,不缩短土层的排水距离,则不能在预压期间尽快地完成设计所要求的沉降量,强度不能及时提高,加载也不能顺利进行。所以上述两个系统,在设计时总是联系起来考虑的。   排水固结法适用于处理各类淤泥、淤泥质土及冲填土等饱和粘性土地基。砂井法特别适用于存在连续薄砂层的地基。但砂井只能加速主固结而不能减少次固结,对有机质土和泥炭等次固结土,不宜只采用砂井法。克服次固结可利用超载的方法。真空预压法适用于能在加固区形成(包括采取措施后形成)稳定负压边界条件的软土地基。降低地下水位法、真空预压法和电渗法由于不增加剪应力,地基不会产生剪切破坏,所以它适用于很软弱的粘土地基。 2、加固机理 (1)堆载预压加固机理   预压法是在建筑物建造以前,在建筑场地进行加载预压,使地基的固结沉降基本完成并提高地基土强度的方法。   在饱和软土地基上施加荷载后,孔隙水被缓慢排出,孔隙体积随之逐渐减少,地基发生固结变形。同时随着超静水压力逐渐消散,有效应力逐渐提高,地基土强度就逐渐增长。 在荷载作用下,土层的固结过程就是超静孔隙水压力(简称孔隙水压力)消散和有效应力增加的过程。如地基内某点的总应力增量为,有效应力增量为,孔隙水压力增量为,则三者满足以下关系: 用填土等外加荷载对地基进行预压,是通过增加总应力并使孔隙水压力消散而增加  有效应力的方法。堆载预压是在地基中形成超静水压力的条件下排水固结,称为正压固结。   地基土层的排水固结效果与它的排水边界有关。根据固结理论,在达到同一固结度时,固结所需的时间与排水距离的长短平方成正比。软粘土层越厚,一维固结所需的时间越长。如果淤泥质土层厚度大于10~20m,要达到较大固结度>80%,所需的时间要几年至几十年之久。为了加速固结,最为有效的方法是在天然土层中增加排水途径,缩短排水距离,在天然地基中设置垂向排水体。这时土层中的孔隙水主要通过砂井和部分从竖向排出。所以砂井(袋装砂井或塑料排水带)的作用就是增加排水条件。为此,缩短了预压工程的预压期,在短期内达到较好的固结效果,使沉降提前完成;加速地基土强度的增长,使地基承载力提高的速率始终大于施工荷载的速率,以保证地基的稳定性,这一点无论从理论和实践上都得到了证实。 (2)真空预压加固机理   真空预压法是在需要加固的软土地基表面先铺设砂垫层,然后埋设垂直排水管道,再用不透气的封闭膜使其与大气隔绝,薄膜四周埋入土中,通过砂垫层内埋设的吸水管道,用真空装置进行抽气,使其形成真空,增加地基的有效应力。   当抽真空时,先后在地表砂垫层及竖向排水通道内逐步形成负压,使土体内部与排水通道、垫层之间形成压差。在此压差作用下,土体中的孔隙水不断由排水通道排出,从而使土体固结。   真空预压的原理主要反映在以下几个方面:   1)薄膜上面承受等于薄膜内外压差的荷载。   2)地下水位降低,相应增加附加应力。   3)封闭气泡排出,土的渗透性加大。   真空预压是通过覆盖于地面的密封膜下抽真空,使膜内外形成气压差,使粘土层产生固结压力。即是在总应力不变的情况下,通过减小孔隙水压力来增加有效应力的方法。真空预压和降水预压是在负超静水压力下排水固结,称为负压固结。 3、设计与计算   排水固结法的设计,实质上就是进行排水系统和加压系统的设计,使地基在受压过程中排水固结、强度相应增加以满足逐渐加荷条件下地基稳定性的要求,并加速地基的固结沉降,缩短预压的时间。 (1)计算理论 1)瞬时加荷条件下固结度计算 不同条件下平均固结度计算公式见表4.2.2-1。 表4.2.2-1 不同条件下平均固结度计算公式 序号 条 件 平均固结度计算公式 备 注 1 竖向排水固结 (>30%) Tezaghi解 2 内径向排水固结 1 Barron解 3 竖向和内径向排水固结(砂井地基平均固结度) = 4 砂井未贯穿受压土层的平均固结度 5 普遍表达式 表中:——竖向固结系数,    ——径向固结系数(或称水平向固结系数),    ——每一个砂井有效影响范围的直径;    ——砂井直径。 2)逐渐加荷条件下地基固结度的计算 以上计算固结度的理论公式都是假设荷载是一次瞬间加足的。实际工程中,荷载总是分级逐渐施加的。因此,根据上述理论
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服