资源描述
一元一次方程方程应用题归类分析
1. 和、差、倍、分问题:
例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?
分析:等量关系为:
解:设1990年6月底每10万人中约有x人具有小学文化程度
2. 等积变形问题:
常用等量关系为: ①形状面积变了,周长没变;②原料体积=成品体积。
例2. 用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留整数)
分析:等量关系为:圆柱形玻璃杯体积=长方体铁盒的体积 下降的高度就是倒出水的高度
解:设玻璃杯中的水高下降xmm
3. 劳力调配问题: 这类问题要搞清人数的变化
例3. 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
分析:列表法。
每人每天
人数
数量
大齿轮
16个
x人
16x
小齿轮
10个
人
解:设分别安排x名、名工人加工大、小齿轮
4. 比例分配问题:
例4. 三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几?
解:设一份为x,则三个数分别为x,2x,4x 分析:等量关系:三个数的和是84
5. 数字问题
例5. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数
等量关系:原两位数+36=对调后新两位数 解:设十位上的数字X,则个位上的数是2x,
10×2x+x=(10x+2x)+36解得x=4,2x=8.
6. 工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率×工作时间 经常在题目中未给出工作总量时,设工作总量为单位1。
例6. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
分析设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。
解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(+)×3+=1, 解这个方程,++=1
12+15+5x=60 5x=33 ∴ x==6 答:略.
8. 利润赢亏问题
(1)销售问题中常出现的量有:进价、售价、标价、利润等有关关系式:
例8. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
分析:探究题目中隐含的条件是关键,可直接设出成本为X元
进价
折扣率
标价
优惠价
利润
x元
8折
(1+40%)x元
80%(1+40%)x
15元
等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15
解:设进价为X元,80%X(1+40%)—X=15,X=125 答:略.
9. 储蓄问题
利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%)
例9. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)
分析:等量关系:本息和=本金×(1+利率)解:设半年期的实际利率为x,250(1+x)=252.7,x=0.0108
所以年利率为0.0108×2=0.0216
2
展开阅读全文