1、相似三角形解题方法、技巧、步骤、辅助线解析 一、相似、全等的关系一、相似、全等的关系 全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础 二、相似三角形二、相似三角形(1)三角形相似的条件:三角形相似的条件:;.三、两个三角形相似的六种三、两个三角形相似的六种图图形:形:只要能在复只要能在复杂图杂图形中辨形中辨认认出上述基本出上述基本图图形,形,并能根据并能根据问题问题需要舔加适当的需要舔加适当的辅辅助助线线,构,构造出基本造出基本图图形
2、,从而使形,从而使问题问题得以解决得以解决.四、三角形相似的证题思路:判定两个三角形相似思路:四、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单;2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例;3)若无对应角相等,则只考虑三组对应边是否成比例;a)已知一对等角找另一角 两角对应相等,两三角形相似 找夹边对应成比例 两边对应成比例且夹 角相等,两三角形相似 b)己知两边对应成比例找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直
3、角三角形相似 c)己知一个直角找另一角 两角对应相等,两三角形相似 找两边对应成比例 判定定理1或判定定理4d)有等腰关系找顶角对应相等 判定定理1找底角对应相等 判定定理1找底和腰对应成比例 判定定理3 e)相似形的传递性 若12,23,则13五、五、“三点定形法三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫
4、做“竖定”。有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。例1、已知:如图,ABC中,CEAB,BFAC.求证:(判断“横定”还是“竖定”?)例2、如图,CD是RtABC的斜边AB上的高,BAC的平分线分别交BC、CD于点E、F,ACAE=AFAB吗?说明理由。分析方法:1)先将积式_2)_(“横定”还是“竖定”?)已知:如图,ABC中,ACB=900,AB的垂直平分线交AB于D,交BC延长线于F。求证:CD2=DEDF。分析方法:1)先将积式_2)_(“横定”还是“竖定”?)六、过渡法(或叫代换法)六、
5、过渡法(或叫代换法)有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明例1:如图3,ABC中,AD平分BAC,AD的垂直平分线FE交BC的延长线于E求证:DE2BECE分析:等量过渡法(等线段代换法)等量过渡法(等线段代换法)遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。然后再应用三点定形法确定相似三角形。只要代换得当,问题往往
6、可以得到解决。当然,还要注意最后将代换的线段再代换回来。1.等比等比过过渡法(等比代渡法(等比代换换法)法)当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代换,然后再用三点定形法来确定三角形。例2:如图4,在ABC中,BAC=90,ADBC,E是AC的中点,ED交AB的延长线于点F求证:3、等、等积过积过渡法(等渡法(等积积代代换换法)法)思考问题的基本途径是:用三点定形法确定两个三角形,然后通过三角形相似推出线段成比例;若三点定形法不能确定两个相似三
7、角形,则考虑用等量(线段)代换,或用等比代换,然后再用三点定形法确定相似三角形,若以上三种方法行不通时,则考虑用等积代换法。例3:如图5,在ABC中,ACB=90,CD是斜边AB上的高,G是DC延长线上一点,过B作BEAG,垂足为E,交CD于点F求证:CD2DFDGFGCEDAB小结小结:证明等积式思路口诀:证明等积式思路口诀:“遇等积,化比例:遇等积,化比例:横找竖找定相似;横找竖找定相似;不相似,不用急:不相似,不用急:等线等比来代替。等线等比来代替。、证比例式和等积式的方法:、证比例式和等积式的方法:对线段比例式或等积式的证明:对线段比例式或等积式的证明:常用“三点定形法”、等线段替换法、中间比过渡法、面积法等若比例式或等积式所涉及的线段在同一直线上时,应将线段比“转移”(必要时需添辅助线),使其分别构成两个相似三角形来证明 可用口诀:可用口诀:遇等积,改等比,横看竖看找关系;遇等积,改等比,横看竖看找关系;三点定形用相似,三点共线取平截;三点定形用相似,三点共线取平截;平行线,转比例,等线等比来代替;平行线,转比例,等线等比来代替;两两端各自找联系,可用射影和园幂端各自找联系,可用射影和园幂