收藏 分销(赏)

九年级几何综合题.doc

上传人:仙人****88 文档编号:7948152 上传时间:2025-01-28 格式:DOC 页数:13 大小:870.50KB 下载积分:10 金币
下载 相关 举报
九年级几何综合题.doc_第1页
第1页 / 共13页
九年级几何综合题.doc_第2页
第2页 / 共13页


点击查看更多>>
资源描述
几何探究题 1、(1)如图1,图2,图3,在中,分别以为边,向外作正三角形,正四边形,正五边形,相交于点. ①如图1,求证:; ②探究:如图1, ; 如图2, ; 如图3, . (2)如图4,已知:是以为边向外所作正边形的一组邻边;是以为边向外所作正边形的一组邻边.的延长相交于点. ①猜想:如图4, (用含的式子表示); ②根据图4证明你的猜想. (1)①证法一:与均为等边三角形, , 且 , 即 证法二:与均为等边三角形, ,且可由绕着点按顺时针方向旋转得到 ②,,.(2)①②证法一:依题意,知和都是正边形的内角,,, ,即. . ,, , 证法二:同上可证 . ,如图,延长交于, , 证法三:同上可证 . . , 即 2、如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动. (1)求AD的长; (2)设CP=x,问当x为何值时△PDQ的面积达到最大,并求出最大值; (3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由. (1)解法一:如图25-1 过A作AE⊥CD,垂足为E . 依题意,DE=. 在Rt△ADE中,AD=. 图25-1 解法二:如图25-2 过点A作AE∥BC交CD于点E,则CE=AB=4 . ∠AED=∠C=60°. 又∵∠D=∠C=60°, ∴△AED是等边三角形 . ∴AD=DE=9-4=5 . (2)解:如图25-1 图25-2 ∵CP=x,h为PD边上的高,依题意,△PDQ的面积S可表示为: S=PD·h =(9-x)·x·sin60° =(9x-x2) =-(x-)2+. 由题意,知0≤x≤5 . 当x=时(满足0≤x≤5),S最大值=. (3)证法一:如图25-3 假设存在满足条件的点M,则PD必须等于DQ . 于是9-x=x,x=. 此时,点P、Q的位置如图25-3所示,连QP . △PDQ恰为等边三角形 . 过点Q作QM∥DC,交BC于M,点M即为所求. 连结MP,以下证明四边形PDQM是菱形 . 图25-3 易证△MCP≌△QDP,∴∠D=∠3 . MP=PD ∴MP∥QD , ∴四边形PDQM是平行四边形 . 又MP=PD , ∴四边形PDQM是菱形 . 所以存在满足条件的点M,且BM=BC-MC=5-=. 证法二:如图25-4 假设存在满足条件的点M,则PD必须等于DQ . 于是9-x=x,x=. 此时,点P、Q的位置如图25-4所示,△PDQ恰为等边三角形 . 过点D作DO⊥PQ于点O,延长DO交BC于点M,连结PM、QM,则DM垂直平分PQ,∴ MP=MQ . 易知∠1=∠C . ∴PQ∥BC . 又∵DO⊥PQ, ∴MC⊥MD 图25-4 ∴MP= CD=PD 即MP=PD=DQ=QM ∴四边形PDQM是菱形 所以存在满足条件的点M,且BM=BC-MC=5-= 已知矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)时,易证得结论:,请你探究:当点P分别在图(2)、图(3)中的位置时,又有怎样的数量关系?请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论. 答:对图(2)的探究结论为____________________________________. 对图(3)的探究结论为_____________________________________. 证明:如图(2) 结论均是PA2+PC2=PB2+PD2(图2 2分,图3 1分) 证明:如图2过点P作MN⊥AD于点M,交BC于点N, 因为AD∥BC,MN⊥AD,所以MN⊥BC 在Rt△AMP中,PA2=PM2+MA2 在Rt△BNP中,PB2=PN2+BN2 在Rt△DMP中,PD2=DM2+PM2 在Rt△CNP中,PC2=PN2+NC2 所以PA2+PC2=PM2+MA2+PN2+NC2 PB2+PD2=PM2+DM2+BN2+PN2 因为MN⊥AD,MN⊥NC,DC⊥BC,所以四边形MNCD是矩形 所以MD=NC,同理AM = BN, 所以PM2+MA2+PN2+NC2=PM2+DM2+BN2+PN2 即PA2+PC2=PB2+PD2 3、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处. (第22题) (1)直接写出点E、F的坐标; (2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由. 解:(1);. (2)在中,, . 设点的坐标为,其中, 顶点, 设抛物线解析式为. ①如图①,当时,, . 解得(舍去);. . . 解得. 抛物线的解析式为 ②如图②,当时,, . 解得(舍去). ③当时,,这种情况不存在. 综上所述,符合条件的抛物线解析式是. (3)存在点,使得四边形的周长最小. 如图③,作点关于轴的对称点,作点关于轴的对称点,连接,分别与轴、轴交于点,则点就是所求点. ,. . . 又, ,此时四边形的周长最小值是. 4、如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系: (1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断. (2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka, CG=kb (ab,k0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由. (3)在第(2)题图5中,连结、,且a=3,b=2,k=,求的值. (1)① 仍然成立 在图(2)中证明如下 ∵四边形、四边形都是正方形 ∴ ,, ∴ (SAS) ∴ 又∵ ∴ ∴ ∴ (2)成立,不成立 简要说明如下 ∵四边形、四边形都是矩形, 且,,,(,) ∴ , ∴ ∴ ∴ 又∵ ∴ ∴ ∴ (3)∵ ∴ 又∵,, ∴ ∴ 5、正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F。如图1,当点P与点O重合时,显然有DF=CF. ⑴如图2,若点P在线段AO上(不与点A、O重合),PE⊥PB且PE交CD于点E。 ①求证:DF=EF; ②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论; O D C B A 图3 P ⑵若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD于点E。请完成图3并判断⑴中的结论①、②是否分别成立?若不成立,写出相应的结论(所写结论均不必证明) 图2 O D C B A E F P F P(O) D C B A 图1 ⑴ ①略;②PC-PA=CE;⑵结论①仍成立;结论②不成立,此时②中三条线段的数量关系是PA-PC=CE; 将一矩形纸片放在平面直角坐标系中,,,.动点从点出发以每秒1个单位长的速度沿向终点运动,运动秒时,动点从点出发以相等的速度沿向终点运动.当其中一点到达终点时,另一点也停止运动.设点的运动时间为(秒). (1)用含的代数式表示; (2)当时,如图1,将沿翻折,点恰好落在边上的点处,求点的坐标; (3)连结,将沿翻折,得到,如图2.问:与能否平行?与能否垂直?若能,求出相应的值;若不能,说明理由. 图1 O P A x B D C Q y (第24题图) 图2 O P A x B C Q y E 解:(1),. 图1 O P A x B D C Q y 图2 O P A x B C Q y 图3 O F A x B C y E Q P (2)当时,过点作,交于,如图1, 则,, ,. (3)①能与平行. 若,如图2,则, 即,,而, . ②不能与垂直. 若,延长交于,如图3, 则. . . 又,, , ,而, 不存在. 6、如图,在边长为4的正方形中,点在上从向运动,连接交于点. (1)试证明:无论点运动到上何处时,都有△≌△; (2)当点在上运动到什么位置时,△的面积是正方形面积的; (3)若点从点运动到点,再继续在上运动到点,在整个运动过程中,当点 运动到什么位置时,△恰为等腰三角形. (1)证明:在正方形中, 无论点运动到上何处时,都有 = ∠=∠ = ∴△≌△ (2)解法一:△的面积恰好是正方形ABCD面积的时, 过点Q作⊥于,⊥于,则 = == ∴= 由△ ∽△得 解得 ∴时,△的面积是正方形面积的 解法二:以为原点建立如图所示的直角坐标系,过点作⊥轴于点,⊥轴于点. == ∴= ∵点在正方形对角线上 ∴点的坐标为 ∴ 过点(0,4),(两点的函数关系式为: 当时, ∴点的坐标为(2,0) ∴时,△的面积是正方形面积的. (3)若△是等腰三角形,则有 =或=或= ①当点运动到与点重合时,由四边形是正方形知 = 此时△是等腰三角形 ②当点与点重合时,点与点也重合, 此时=, △是等腰三角形 ③解法一:如图,设点在边上运动到时,有= ∵ ∥ ∴∠=∠ 又∵∠=∠ ∠=∠ ∴∠=∠ ∴ == ∵= = =4 ∴ 即当时,△是等腰三角形 解法二:以为原点建立如图所示的直角坐标系,设点在上运动到时,有=. 过点作⊥轴于点,⊥轴于点,则 在△中,,∠=45° ∴=°= ∴点的坐标为(,) ∴过、两点的函数关系式:+4 当=4时, ∴点的坐标为(4,8-4). ∴当点在上运动到时,△是等腰三角形. 8、已知∠MAN,AC平分∠MAN。 ⑴在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC; ⑵在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由; ⑶在图3中: ①若∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=____AC; 第25题图 ②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=____AC(用含α的三角函数表示),并给出证明。 解:⑴证明:∵AC平分∠MAN,∠MAN=120°, ∴∠CAB=∠CAD=60°, E F G ∵∠ABC=∠ADC=90°, ∴∠ACB=∠ACD=30°, ∴AB=AD=AC, ∴AB+AD=AC。 ⑵成立。 证法一:如图,过点C分别作AM、AN的垂线,垂足分别为E、F。 ∵AC平分∠MAN,∴CE=CF. ∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°, ∴∠CDE=∠ABC, ∵∠CED=∠CFB=90°,∴△CED≌△CFB,∴ED=FB, ∴AB+AD=AF+BF+AE-ED=AF+AE,由⑴知AF+AE=AC, ∴AB+AD=AC 证法二:如图,在AN上截取AG=AC,连接CG. ∵∠CAB=60°,AG=AC,∴∠AGC=60°,CG=AC=AG, ∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°, ∴∠CBG=∠ADC,∴△CBG≌△CDA, ∴BG=AD, ∴AB+AD=AB+BG=AG=AC, ⑶①; ②. 证明:由⑵知,ED=BF,AE=AF, 在Rt△AFC中,,即, ∴, ∴AB+AD=AF+BF+AE-ED=AF+AE=2,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服